Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Delaunay triangulation  (1)
  • advection-diffusion  (1)
  • cell vertex advection schemes  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 935-955 
    ISSN: 0271-2091
    Keywords: SUPG finite element method ; multidimensional upwinding ; cell vertex advection schemes ; Euler equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Vertex-based multidimensional upwind schemes for scalar advection are compared with shock-capturing SUPG finite element methods based on linear triangular elements. Both methods share the same compact stencil and are formulated as cell-wise residual distribution methods. The distribution for the finite element method is 1/3, supplemented with a Lax-Wendrov-type dissipation term, while the distribution for the upwind schemes is limited to the downstream nodes of the element. The multidimensional upwind schemes use positivity as the monotonicity criterion, while the finite element method includes a residual-based non-linear dissipation.For hyperbolic systems such as the compressible Euler equations the upwind method relies on a multidimensional wave model to decompose the residual into scalar contributions. From this observation a new SUPG formulation for systems is proposed in which the scalar SUPG method is applied to each of the decomposed residuals obtained from the wave model, thereby providing a better-founded definition of the τ dissipation matrix and shock-capturing term in the SUPG methods.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 241-255 
    ISSN: 0271-2091
    Keywords: Unstructured grids ; Delaunay triangulation ; Advancing front ; Internal node generation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The past decade has known an increasing interest in the solution of the Euler equations on unstructured grids due to the simplicity with which an unstructured grid can be tailored around very complex geometries and be adapted to the solution. It is desirable that the mesh can be generated with minimum input from the user, ideally, just specifying the boundary geometry and, perhaps, a function to prescribe some desired mesh size. The internal nodes should then be found automatically by the grid generation code. The approach we propose here combines the Delaunay triangulation with ideas from the advancing front method of Peraire et al. and Löhner et al. Both methods are briefly reviewed in Section 1. Our method uses a background grid to interpolate local mesh size parameters that is taken from the triangulation of the given boundary nodes. Geometric criteria are used to find a set of nodes in a frontal manner. This set is subsequently introduced into the existing mesh, thus providing an update Delaunay triangulation. The procedure is repeated until no more improvement of the grid can be achieved by inserting new nodes.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 923-936 
    ISSN: 0271-2091
    Keywords: advection-diffusion ; multidimensional upwinding ; finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Multidimensional residual distribution schemes for the convection-diffusion equation are described. Compact upwind cell vertex schemes are used for the discretization of the convective term. For the diffusive term, two approaches are compared: the classical finite element Galerkin formulation, which preserves the compactness of the stencil used for the convective part, and various residual-based approaches in which the diffusive term, evaluated after a reconstruction step, is upwinded along with the convective term.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...