Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 11 (1993), S. 323-340 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A class of truly multidimensional upwind schemes for the computation of inviscid compressible flows is presented here, applicable to unstructured cell-vertex grids. These methods use very compact stencils and produce sharp resolution of discontinuities with no overshoots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Computational Physics 48 (1982), S. 344-365 
    ISSN: 0021-9991
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Computer Science , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A multi-dimensional cell-vertex upwind discretization technique for the Navier-Strokes equations on unstructured grids is presented. The grids are composed of linear triangles in two and linear tetrahedra in three space dimensions. The nonlinear upwind schemes for the inviscid part can be viewed as a multi-dimensional generalization of the Roe-scheme, but also as a special class of Petrov-Galerkin schemes. They share with these schemes a compact Galerkin stencil, and are in addition monotonic by construction. The Petrov-Galerkin interpretation of the discretization technique allows a straightforward extension to the Navier-Strokes equations. For linear elements this boils down to a Galerkin discretization for the viscous terms. Compared to standard finite-volume methods on these grids, the method shows an increased accuracy, which becomes comparable with structured grid algorithms. The spatially discretized set of equations is integrated in time using the Backward Euler time integration method. The full Jacobian matrix is computed, either numerically by finite differences or approximated analytically, and stored. The resulting set of linear equations is solved by a Block MILU(0) preconditioned Krylov subspace method. For this purpose the Aztec library of SANDIA National Laboratories is used, which also takes care of the parallelization process and completely hides the details for the user. Results are presented for a two-dimensional turbulent shock wave boundary layer interaction in a nozzle and the turbulent flow over an ogive cylinder. All computations have been performed on the Cray T3E of the Technical University of Delft.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 23 (1996), S. 923-936 
    ISSN: 0271-2091
    Keywords: advection-diffusion ; multidimensional upwinding ; finite elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Multidimensional residual distribution schemes for the convection-diffusion equation are described. Compact upwind cell vertex schemes are used for the discretization of the convective term. For the diffusive term, two approaches are compared: the classical finite element Galerkin formulation, which preserves the compactness of the stencil used for the convective part, and various residual-based approaches in which the diffusive term, evaluated after a reconstruction step, is upwinded along with the convective term.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 17 (1993), S. 241-255 
    ISSN: 0271-2091
    Keywords: Unstructured grids ; Delaunay triangulation ; Advancing front ; Internal node generation ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The past decade has known an increasing interest in the solution of the Euler equations on unstructured grids due to the simplicity with which an unstructured grid can be tailored around very complex geometries and be adapted to the solution. It is desirable that the mesh can be generated with minimum input from the user, ideally, just specifying the boundary geometry and, perhaps, a function to prescribe some desired mesh size. The internal nodes should then be found automatically by the grid generation code. The approach we propose here combines the Delaunay triangulation with ideas from the advancing front method of Peraire et al. and Löhner et al. Both methods are briefly reviewed in Section 1. Our method uses a background grid to interpolate local mesh size parameters that is taken from the triangulation of the given boundary nodes. Geometric criteria are used to find a set of nodes in a frontal manner. This set is subsequently introduced into the existing mesh, thus providing an update Delaunay triangulation. The procedure is repeated until no more improvement of the grid can be achieved by inserting new nodes.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 935-955 
    ISSN: 0271-2091
    Keywords: SUPG finite element method ; multidimensional upwinding ; cell vertex advection schemes ; Euler equations ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Vertex-based multidimensional upwind schemes for scalar advection are compared with shock-capturing SUPG finite element methods based on linear triangular elements. Both methods share the same compact stencil and are formulated as cell-wise residual distribution methods. The distribution for the finite element method is 1/3, supplemented with a Lax-Wendrov-type dissipation term, while the distribution for the upwind schemes is limited to the downstream nodes of the element. The multidimensional upwind schemes use positivity as the monotonicity criterion, while the finite element method includes a residual-based non-linear dissipation.For hyperbolic systems such as the compressible Euler equations the upwind method relies on a multidimensional wave model to decompose the residual into scalar contributions. From this observation a new SUPG formulation for systems is proposed in which the scalar SUPG method is applied to each of the decomposed residuals obtained from the wave model, thereby providing a better-founded definition of the τ dissipation matrix and shock-capturing term in the SUPG methods.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 26 (1998), S. 987-1000 
    ISSN: 0271-2091
    Keywords: shallow water equations ; multidimensional upwinding ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A multidimensional discretisation of the shallow water equations governing unsteady free-surface flow is proposed. The method, based on a residual distribution discretisation, relies on a characteristic eigenvector decomposition of each cell residual, and the use of appropriate distribution schemes. For uncoupled equations, multidimensional convection schemes on compact stencils are used, while for coupled equations, either system distribution schemes such as the Lax-Wendroff scheme or scalar schemes may be used. For steady subcritical flows, the equations can be partially diagonalised into a purely convective equation of hyperbolic nature, and a set of coupled equations of elliptic nature. The multidimensional discretisation, which is second-order-accurate at steady state, is shown to be superior to the standard Lax-Wendroff discretisation. For steady supercritical flows, the equations can be fully diagonalised into a set of convective equations corresponding to the steady state characteristics. Discontinuities such as hydraulic jumps, are captured in a sharp and non-oscillatory way. For unsteady flows, the characteristic equations remain coupled. An appropriate treatment of the coupling terms allows the discretisation of these equations at the scalar level. Although presently only first-order-accurate in space and time, the classical dam-break problem demonstrates the validity of the approach. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...