Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0568
    Keywords: Key words Joint mechanics ; Elbow joint ; Finite element model ; Trabecular architecure ; Split lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  In the present study, we tested the hypothesis that tension and bending, rather than compression alone, determine the functional adaptation of subchondral bone in incongruous joints. We investigated whether tensile stresses in the subchondral bone of the humero-ulnar articulation are affected by the direction of muscle and joint forces, and whether the tensile stresses are large enough to cause microstructural adaptation, specifically a preferential alignment of the trabeculae and the subchondral collagen fibres. Using a previously validated finite element model of the human humero-ulnar joint, we calculated the contact pressure, the principal compressive and tensile stresses, and the strain energy density in the subchondral bone for various flexion angles. A bicentric (ventro-dorsal) pressure distribution was found in the joint at 30° to 120° of flexion, with contact pressures of up to between 2.5 and 3 MPa in the ventral and dorsal aspects of the ulnar joint surface, but less than 0.5 MPa in the centre. The principal tensile stress in the subchondral bone of the trochlear notch quantitatively exceeded the principal compressive stress at low flexion angles (maximum 8.2 MPa), and the distribution of subchondral strain energy density differed substantially from that of the contact stress (r=–0.72 at 30° and r=+0.58 at 90° of flexion). No important tensile stress was computed in the trochlea humeri. On contact radiography, we found sagittally orientated subarticular trabeculae in the notch, running tangential to the surface. Furthermore, we observed sagittally orientated split lines in the subchondral bone of the notch of 20 cadaver joints, suggesting a ventro-dorsal orientation of the collagen fibres. The trochlea humeri, on the other hand, did not show a preferential direction of the subchondral split lines, these findings confirming the predictions of tensile stresses in the model. We conclude that, due to the important contribution of tension to subchondral bone stress, the distribution of subchondral density cannot be directly employed for assessing the long term distribution of joint pressure at the cartilage surface. The magnitude of the tensional stress varies considerably with the direction of the muscle and joint forces, and it appears large enough to cause functional adaptation of the subchondral bone on a microstructural level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0003-276X
    Keywords: Elbow ; Humero-ulnar joint ; Incongruity ; Joint loading ; Joint space ; Contact areas ; Load transmission ; Numerical methods ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Background: Previous studies have shown that the trochlear notch is deeper than necessary for an exact fit with the humerus. However, humero-ulnar joint space width and contact areas have so far not been quantified for variations in the load and angle of flexion.Methods: Six fresh cadaveric specimens were investigated at 30°, 60°, 90°, and 120° of flexion and at loads of 25 and 500 N, simulating resisted elbow extension. The joint space width and contact were determined, using polyether casting material.Results: At 25 N all joints made contact in the ventral and dorsal aspects of the articular surfaces, whereas in the depth of the trochlear notch the joint space was on average between 0.3 and 2.8 mm wide, with some variation between individuals. At 500 N the joint space width was considerably reduced and the contact areas expanded towards the depth of the notch. The size of the dorsal contact areas was significantly smaller at 30° and that of the ventral ones at 120°, their ventro-dorsal ratio decreasing considerably from 30° to 120° (P〈 0.01).Conclusion: These results indicate that the size of the contact areas depends to a slight extent on the joint position, but that at all loads and flexion angles a bicentric contact and an important central joint space width emerge because of the concave incongruity of the joint, These data may be used for numerical calculations, analysing the effects of incongruity on the joint stress and on the functional adaptation of the subarticular tissues. © 1995 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-276X
    Keywords: Elbow ; Humero-ulnar joint ; Incongruity ; Finite element analysis ; Articular cartilage ; Subchondral mineralization ; Bone density ; Joint stress ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Background: A deeper joint socket (concave incongruity) is found at most angles of flexion of the humero-ulnar joint and maintained over a wide range of physiological loading. It is, however, unclear how far this incongruity affects the distribution of load and subchondral mineralization of this joint as compared with a congruous configuration.Methods: Two nonlinear, axisymmetrical finite element models with two cartilage layers were constructed, one congruous and one incongruous, with a joint space of realistic magnitude. The distribution of subchondral mineralization was determined by computed tomography osteoabsorptiometry in the same six specimens that were investigated in the first part of the study, and compared with the biomechanical data obtained there and the predictions of the models.Results: In the congruous case, the center of the socket is highly loaded, whereas the periphery does not experience mechanical stimulation. A central bone density maximum is predicted. With concave incongruity the position of the contact areas shifts from the joint margin towards the center as the load increases, and the peak stresses are considerably lower. A bicentric ventro-dorsal distribution pattern of subchondral mineralization is predicted, and this is actually found in the six specimens.Conclusions: Concave incongruity is shown to determine load transmission and subchondral mineralization of the humero-ulnar joint. It is suggested that this shape leads to a more even distribution of stress, provides intermittent stimulation of the cartilaginous tissue, and has beneficial effects on the metabolism, nutrition, and lubrication of the articular cartilage during cyclic loading. © 1995 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...