Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 65 (1995), S. 86-98 
    ISSN: 1432-0681
    Keywords: Anisotropic bodies ; spectral decomposition ; elastic eigenstates ; strain ellipsoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, σ1 and σ2 which are shears (σ2 being a simple shear and σ1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components σ3, and σ4, are the orthogonal supplements to the shear subspace of σ1 and σ2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle ω. The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective σx, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property. An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the “projections” of σx in the principal3D stress space. Then, the characteristic state σ2 vanishes, whereas stress states σ1, σ3 and σ4 are represented by three mutually orthogonal vectors, oriented as follows: The ε3 and ε4 lie on the principal diagonal plane (σ3δ12) with subtending angles equaling (ω−π/2) and (π-ω), respectively. On the positive principal σ3-axis, ω is the eigenangle of the orthotropic material, whereas the ε1-vector is normal to the (σ3δ12)-plane and lies on the deviatoric π-plane. Vector ε2 is equal to zero. It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle ω, constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the σx-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the ε1-, ε3- and ε4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials. Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle ω alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle ω for isotropic materials is always equal to ωi = 125.26° and constitutes a minimum, the angle |ω| progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle ω approaches its limits of 90 or 180°.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 65 (1995), S. 86-98 
    ISSN: 1432-0681
    Keywords: Key words Anisotropic bodies ; spectral decomposition ; elastic eigenstates ; strain ellipsoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinf orced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, σ 1 and σ 2, which are shears (σ 2 being a simple shear and σ 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components σ 3 and σ 4, are the orthogonal supplements to the shear subspace of σ 1 and σ 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle ω. The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective σ x-tensors, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property. An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the “projections” of σ x in the principal 3D stress space. Then, the characteristic state σ 2 vanishes, whereas stress states σ 1, σ 3 and σ 4 are represented by three mutually orthogonal vectors, oriented as follows: The ε 3- and ε 4-vectors lie on the principal diagonal plane (σ3∂12) with subtending angles equaling (ω−π/2) and (π− ; ω), respectively. On the positive principal σ3-axis, ω is the eigenangle of the orthotropic material, whereas the ε 1-vector is normal to the (σ3∂12)-plane and lies on the deviatoric π-plane. Vector ε 2 is equal to zero. It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle ω, constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the σ x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the ε 1, ε 3- and ε 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials. Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle ω alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle ω for isotropic materials is always equal to ω i =125.26° and constitutes a minimum, the angle |ω| progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratios E L /2G L of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle ω approaches its limits of 90 or 180°.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 260 (1982), S. 837-841 
    ISSN: 1435-1536
    Keywords: Adhesion coefficient ; composites ; fibers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A theoretical model, consisting of a series of infinite concentric cylinders surrounding a fiber in a composite material, was introduced in this paper to give a quantitative account of interface phenomena, already experimentally observed. A series of specimens, conveniently designed to represent the theoretical model, were subjected to dynamic modes of loading to measure the amount of adhesion between fibers and matrices by means of an adhesion coefficient developed in the theory. It was found that theoretical results for the adhesion between matrix and filler were compatible with the structural characteristics of the specimens tested.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 261 (1983), S. 394-403 
    ISSN: 1435-1536
    Keywords: Moisture absorption ; particulates ; composites ; glass transition temperatured
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Water absorption in particulate composites at ambient temperature influences their thermomechanical properties. Second Fick's law of diffusion was used in this paper to predict the diffusion coefficient of the composite materials tested. In all cases the matrix material was a diglycidyl ether of bisphenol-A polymer cured with 8 phr triethylene tetramine and filled with iron particles with an average diameter 150 μm at five distinct volume fractionsv f =0, 0.05, 0.10, 0.16 and 0.20. The modification of the modulus of elasticity, ultimate stress, breaking strain and breaking energy due to moisture absorption was examined. Moreover, differential scanning calorimetry was used to study the influence of the time exposure into water and the filler concentration of the particulates on their glass transition temperature. Finally, the void occupancy in the composite was evaluated from free volume considerations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 19 (1983), S. 17-26 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A simple two-step corrective technique is presented in this paper for evaluating stress intensity factors in crack problems. In the first step an approximate evaluation of the stress intensity factor was made by considering the cracked plate to be of infinite size. The stresses of the problem were relaxed by the stresses of the infinite body which corresponds to the approximate value of the stress intensity factor. The expected discrepancy in the value of SIF by the infinite plate approximation was corrected in the second step where the existing residual stresses are equilibrated at the cracked plate by using any of the conventional finite element techniques and the corrective value of the stress intensity factor is calculated by using an appropriate collocation formula. The method was applied to three typical plane problems of cracked plates with satisfactory results.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 19 (1983), S. 421-430 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new technique for the solution of singular integral equations is proposed, where the unknown function may have a particular singular behaviour, different from the one defined by the dominant part of the singular integral equation. In this case the integral equation may be discretized by two different quadratures defined in such a way that the collocation points of the one correspond to the integration points of the other. In this manner the system is reduced to a n × n system of discrete equations and the method preserves, for the same number of equations, the same polynomial accuracy. The main advantage of the method is that it can proceed without using special collocation points. This new technique was tested in a series of typical examples and yielded results which are in good agreement with already existing solutions.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 949-959 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A modification of the collocation method for the numerical solution of Cauchy-type singular integral equations appearing in plane elasticity and, especially, crack problems is proposed. This modification, based on a variable transformation, applies to the case when the unknown function of the singular integral equation behaves like A(x - c)α + B(x - c)β, where α 〈 0, 0 〈 β - α 〈 1, near an endpoint c of the integration interval. In plane elasticity such a point is either a crack tip or a corner point of the boundary of the elastic medium. Thus the method seems to be quite efficient for the numerical evaluation of generalized stress intensity factors near such points. A successful application of the method to the classical plane elasticity problem of an antiplane shear crack terminating at a bimaterial interface was also made.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 14 (1979), S. 1710-1714 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A modification of the numerical techniques of solution of Cauchy-type singular integral equations and determination of stress intensity factors at crack tips in plane elastic media is proposed. This technique presents some advantages under appropriate geometry conditions.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 20 (1984), S. 2065-2075 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A method which combines the finite element technique and the singular-integral equation method is presented. The association of the two methods is obtained with the help of Schwarz's alternating method (SAM). The method was applied with satisfactory results to the solution of a series of problems of a circular arc crack lying inside a finite thin plate for various lengths of the circular arc and for various dimensions of the rectangular cracked sheet.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 15 (1980), S. 629-634 
    ISSN: 0029-5981
    Keywords: Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...