Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: d-Amino acid ; 1-Aminocyclopropane-1-carboxylic acid ; α-Aminoisobutyric acid ; Ethylene synthesis ; 1-(Malonylamino)cyclopropane-1-carboxylic acid ; α-(Malonylamino)isobutyric ; Vigna
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1-Aminocyclopropane-1-carboxylic acid (ACC) is known to be converted to ethylene and conjugated into N-malonyl-ACC in plant tissues. When α-amino[1-14C]isobutyric acid (AIB), a structural analog of ACC, was administered to mungbean (Vigna radiata L.) hypocotyl segments, it was metabolized to 14CO2 and conjugated to N-malonyl-AIB (MAIB). α-Aminoisobutyric acid inhibited the conversion of ACC to ethylene and also inhibited, to a lesser extent, N-malonylation of ACC and d-amino acids. Although the malonylation of AIB was strongly inhibited by ACC as well as by d-amino acids, the metabolism of AIB to CO2 was inhibited only by ACC but not by d-amino acids. Inhibitors of ACC conversion to ethylene such as anaerobiosis, 2,4-dinitrophenol and Co2+, similarly inhibited the conversion of AIB to CO2. These results indicate that the malonyalation of AIB to MAIB is intimately related to the malonylation of ACC and d-amino acids, whereas oxidative decarboxylation of AIB is related to the oxidative degradation of ACC to ethylene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: 1-aminocyclopropane-1-carboxylate (ACC) synthase ; elicitor ; ethylene ; gene expression ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The key enzyme of ethylene biosynthesis, ACC synthase, is encoded by a multigene family. We describe three new DNA sequences encoding members of the ACC synthase family of the tomato. One of these sequences encodes a novel ACC synthase, LE-ACS6, which is phylogenetically related to the ACC synthases LE-ACS1A and LE-ACS1B. Gene-specific probes for seven tomato ACC synthase genes were prepared. They were used for RNase protection assays to study the accumulation of ACC synthase transcripts in suspension-cultured tomato cells after the addition of an elicitor. The ACC synthase genes LE-ACS2, LE-ACS5 and LE-ACS6 were strongly induced by the elicitor. In contrast, the genes LE-ACS1B, LE-ACS3 and LE-ACS4 were constitutively expressed and LE-ACS1B was present at all times at a particularly high level. Thus, there are two groups of ACC synthase transcripts expressed in these cells, either elicitor-induced or constitutive. A transcript of LE-ACS1A was not detected. Despite the presence of LE-ACS1B, LE-ACS2, LE-ACS3, LE-ACS4 and LE-ACS5, there was only little ethylene produced in the absence of the elicitor. Increased ethylene production is usually correlated with the accumulation of ACC synthase transcripts, indicating that ethylene production is controlled via the transcriptional activation of ACC synthase genes. However, the abundance of several ACC synthase mRNAs studied was not strictly correlated with the rate of elicitor-induced ethylene production. Our data provide evidence that the activity of these ACC synthases may not solely be controlled by the transcriptional activation of ACC synthase genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: 1-Amninocyclopropane-1-carboxylate synthase ; cDNA ; Ethylene synthesis ; Fruit ripening ; Gene expression ; Malus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 1-Aminocyclopropane-1-carboxylate (ACC) synthase (EC 4.4.1.14) purified from apple (Malus sylvestris Mill.) fruit was subjected to trypsin digestion. Following separation by reversed-phase high-pressure liquid chromatography, ten tryptic peptides were sequenced. Based on the sequences of three tryptic peptides, three sets of mixed oligonucleotide probes were synthesized and used to screen a plasmid cDNA library prepared from poly(A)+ RNA of ripe apple fruit. A 1.5-kb (kilobase) cDNA clone which hybridized to all three probes were isolated. The clone contained an open reading frame of 1214 base pairs (bp) encoding a sequence of 404 amino acids. While the polyadenine tail at the 3′-end was intact, it lacked a portion of sequence at the 5′-end. Using the RNA-based polymerase chain reaction, an additional sequence of 148 bp was obtained at the 5′-end. Thus, 1362 bp were sequenced and they encode 454 amino acids. The deduced amino-acid sequence contained peptide sequences corresponding to all ten tryptic fragments, confirming the identity of the cDNA clone. Comparison of the deduced amino-acid sequence between ACC synthase from apple fruit and those from tomato (Lycopersicon esculentum Mill.) and winter squash (Cucurbita maxima Duch.) fruits demonstrated the presence of seven highly conserved regions, including the previously identified region for the active site. The size of the translation product of ACC-synthase mRNA was similar to that of the mature protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that apple ACC-synthase undergoes only minor, if any, post-translational proteolytic processing. Analysis of ACC-synthase mRNA by in-vitro translation-immunoprecipitation, and by Northern blotting indicates that the ACC-synthase mRNA was undetectable in unripe fruit, but was accumulated massively during the ripening proccess. These data demonstrate that the expression of the ACC-synthase gene is developmentally regulated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: ACC synthase ; chilling ; Citrus sinensis ; ethylene ; gene expression ; peel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diurnal change in the temperature below or above 12.5 °C hastens the degreening of citrus peel and elicits the phytohormone ethylene production in citrus fruit. Ethylene triggers the degradation of chlorophyll and synthesis of carotenoids in citrus peel. To investigate if ethylene is required for the degreening of citrus peel elicited by low temperatures, we studied the chilling-regulated gene expression of ACC synthase, one of the key enzymes catalyzing ethylene biosynthesis. We isolated and characterized a chilling-inducible 1-aminocyclopropane-1-carboxylate synthase (ACC synthase) gene, CS-ACS1, and a chilling-repressible gene, CS-ACS2, from citrus peel. The CS-ACS1 transcript 1.7 kb in length encodes a polypeptide of 483 amino acids (M r 54 115, pI 6.63), whereas the CS-ACS2 transcript of 1.8 kb encodes a polypeptide of 477 amino acids (M r 53 291, pI 6.72). Both genes showed a rapid but transient induction (within 2.4 h) of transcripts upon rewarming after the chilling (4 °C) treatment. After 24 h of incubation at room temperature, CS-ACS1 mRNA diminished to an undetectable level, whereas the CS-ACS2 mRNA regained its basal level of expression attained prior to the chilling treatment. Chilling-induced ethylene production and ACC accumulation were also observed upon rewarming. Both genes were also induced by the wound stress (excision). The protein synthesis inhibitor cycloheximide super-enhances the accumulation of both ACS transcripts at room temperature. Molecular analysis of the 3.3 kb genomic DNA of CS-ACS1 revealed that this gene consists of three introns and four exons. The intron 3 is exceptionally large (1.2 kb) and shares significant homology with mitochondrial DNA, supporting the intron-late theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...