Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inferior olive  (3)
  • Fastigial nucleus, [14C]-2-deoxyglucose  (1)
  • Intracerebellar nuclei  (1)
Material
Years
Keywords
  • 1
    ISSN: 1432-1106
    Keywords: Harmaline tremor ; Cerebellum ; Inferior olive ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Purkinje cells were recorded extracellularly and mapped in the cerebellar cortex of the rat under tremogenic doses of harmaline. Four différent types of responses were encountered, of which two were considered as being responsible for the harmaline tremor. The latter had a regular firing pattern of complex spikes at 5 to 10 Hz and were mostly found in the vermis. Their number decreased in the more lateral region of the cerebellar cortex until they eventually disappeared. Horseradish peroxidase was injected into all the areas of the cerebellar cortex containing Purkinje cells with harmaline-induced activity. Labeled neurons were in all cases traced to the medial accessory olive. The metabolic activity of the inferior olive under harmaline was measured with 2-deoxyglucose. Increased labeling was only found in the medial accessory olive. Such an increase was demonstrated as being due to a direct effect of the drug on the inferior olivary neurons, indicating that the medial accessory olive is responsible for the harmaline tremor in the rat. Our results point out that, in the rat, there is an inverse relationship between serotoninergic innervation of a region in the inferior olivary nucleus and that with harmaline sensitivity, therefore a serotoninergic mechanism hypothesis for the harmaline tremor needs further investigation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1106
    Keywords: Metabolism ; Intracerebellar nuclei ; Inferior olive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Metabolic activity of the intracerebellar nuclei during cryoinactivation of the inferior olive was studied in the anaesthetized rat by using the 14C-2-deoxyglucose method. Single unit recording of Purkinje cells was simultaneously monitored in the cerebellar cortex. Local inactivation in the inferior olive resulted in regional suppression of complex spike discharges in the cerebellar cortex. An increased metabolic activity was observed in the cerebellar nuclei contralateral to the cryoinactivation site correlating the somatotopically arranged olivo-cerebello-nuclear circuit. This increase was shown to be due specifically to inactivation of the inferior olive, since it was not obtained in a rat in which the inferior olive was previously destroyed by neurotoxic doses of 3-acetylpyridine. The results are interpreted as being due to an increased presynaptic activity of the terminals of the Purkinje cells which fire simple spikes at high rates after climbing fibre deafferentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Cerebellum ; Fastigial nucleus, [14C]-2-deoxyglucose ; Unit activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The cerebellar output function was studied using cerebellopetal proprioceptive stimulation hich produces simple and complex excitatory discharges as well as inhibitory activity in the Purkinje cells. The activity of the intracerebellar nuclei (and of the entire brain stem) was measured by the energy consumption as revealed with the [14C]-2-deoxyglucose method. The stimulations consisted of repetitive (1–20 c/s) electrical excitation of the nerve leading to the inferior oblique, to the masseteric and to the gastrocnemius soleus muscle. Compared to a group of non-stimulated controls, heavy bilateral labeling was obtained in the posterior pole of the fastigial nucleus. This was not observed with stimulation of the vibrissal pad which, however, produced a clear increase of [14C]-2-deoxy glucose uptake in the secondary trigeminal complex. Labeling of the posterior part of the fastigial nuclei was suppressed by ablation or pharmacologic inactivation of the overlying cerebellar cortex which suppresses the inhibitory activity of the Purkinje cells into the nuclear cells. Labeling of the posterior fastigial nuclei was also decreased in animals not stimulated but with ablation or pharmacologic inactivation of the overlying cerebellar ortex. The hypothesis proposed is that the marking results are the consequence of an increased activity in the Purkinje cell terminals. The activity of the Purkinje cells was also recorded extracellulary both before and during repetitive stimulation of a muscle nerve. The discharge activity of those in the cerebellar vermis and giving axons to the posterior fastigial nucleus was increased by the stimulation, whereas the activity of those of the hemispheral parts remained unchanged. Units in the fastigial nucleus were also recorded. Their activity was found to be deeply depressed so that only a few units were encountered and no further decrease of their discharge could be detected with the stimulation of a muscle nerve. Nevertheless, using the present data and those previously obtained, the conclusion is advanced that the cerebellar output function is actually decreased during afferent cerebellar stimulation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 42 (1981), S. 371-382 
    ISSN: 1432-1106
    Keywords: Harmaline ; Tremor ; Inferior olive ; Cerebellum ; Deoxyglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Changes of local cerebral glucose consumption under the effect of tremogenic doses of harmaline were studied. To find the brain structures activated by the drug, the autoradiographic method using [14C]2-deoxyglucose was applied to young cats. After administration of harmaline, the animals were paralized with flaxedil. Results were compared to a group of control animals not injected with the drug, but submitted to the same experimental protocol. Increases of neuronal activity were observed in several structures. A) Among the relays of the olivo-cerebellofastigio (and vestibulo)-reticulo-spinal circuit that had been claimed to fire at the frequency of the tremor, labeling was found in: 1. selected portions of the inferior olive including the medial accessory olive and the caudolateral part of the dorsal accessory olive; 2. the molecular layers of the cerebellar cortex including vermian and paravermian zones. Labeling of the olivo-cerbellar system was therefore larger than the compartment controlling the fastigial nucleus and extended to that controlling the interpositus nucleus. B) Other structures not under the direct control of the olivo-cerebellar system displayed increased radioactivity under harmaline: lateral reticular nucleus, nucleus reticularis tegmenti pontis, red nucleus and basal ganglia. Part of nucleus ambiguus, intensely labeled in the control animals, showed decreased radioactivity under harmaline. The experiments were repeated with the same protocol in another group of animals with unilateral sections of the inferior cerebellar peduncle in order to distinguish between a direct pharmacological influence and a nervous one. Marking of the basal ganglia was not affected by pedunculotomy, suggesting a direct “pharmacological” action of the drug in this cases. On the other hand, marking of the other labeled structures was asymmetric or suppressed by pedunculotomy, and therefore could result from a “nervous” effect secondary to activation of the inferior olive.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...