Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Flavocytochrome c  (1)
  • Gasoline demands  (1)
  • Phototrophic  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Energy Economics 13 (1991), S. 203-210 
    ISSN: 0140-9883
    Keywords: Elasticities ; Fuel price ; Gasoline demands
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Economics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words Chromatium vinosum ; Phototrophic ; sulfur bacteria ; Sulfur globules ; Extracytoplasmic ; localization ; Sulfide oxidation ; Sulfur deposition ; Thiocapsa roseoperscina ; Interposon mutagenesis ; phoA fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Purple sulfur bacteria store sulfur as intracellular globules enclosed by a protein envelope. We cloned the genes sgpA, sgpB, and sgpC, which encode the three different proteins that constitute the sulfur globule envelope of Chromatium vinosum D (DSMZ 180T). Southern hybridization analyses and nucleotide sequencing showed that these three genes are not clustered in the same operon. All three genes are preceded by sequences resembling σ70-dependent promoters, and hairpin structures typical for rho-independent terminators are found immediately downstream of the translational stop codons of sgpA, sgpB, and sgpC. Insertional inactivation of sgpA in Chr. vinosum showed that the presence of only one of the homologous proteins SgpA and SgpB suffices for formation of intact sulfur globules. All three sgp genes encode translation products which – when compared to the isolated proteins – carry amino-terminal extensions. These extensions meet all requirements for typical signal peptides indicating an extracytoplasmic localization of the sulfur globule proteins. A fusion of the phoA gene to the sequence encoding the proposed signal peptide of sgpA led to high specific alkaline phosphatase activities in Escherichia coli, further supporting the envisaged targeting process. Together with electron microscopic evidence these results provide strong indication for an extracytoplasmic localization of the sulfur globules in Chr. vinosum and probably in other Chromatiaceae. Extracytoplasmic formation of stored sulfur could contribute to the transmembranous Δp that drives ATP synthesis and reverse electron flow in Chr. vinosum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key wordsChromatium vinosum ; Flavocytochrome c ; Sulfide:quinone oxidoreductase ; Sulfide oxidation ; Phototrophic sulfur bacteria ; Interposon mutagenesis ; phoA fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Sulfide oxidation in the phototrophic purple sulfur bacterium Chromatium vinosum D (DSMZ 180T) was studied by insertional inactivation of the fccAB genes, which encode flavocytochrome c, a protein that exhibits sulfide dehydrogenase activity in vitro. Flavocytochrome c is located in the periplasmic space as shown by a PhoA fusion to the signal peptide of the hemoprotein subunit. The genotype of the flavocytochrome-c-deficient Chr. vinosum strain FD1 was verified by Southern hybridization and PCR, and the absence of flavocytochrome c in the mutant was proven at the protein level. The oxidation of thiosulfate and intracellular sulfur by the flavocytochrome-c-deficient mutant was comparable to that of the wild-type. Disruption of the fccAB genes did not have any significant effect on the sulfide-oxidizing ability of the cells, showing that flavocytochrome c is not essential for oxidation of sulfide to intracellular sulfur and indicating the presence of a distinct sulfide-oxidizing system. In accordance with these results, Chr. vinosum extracts catalyzed electron transfer from sulfide to externally added duroquinone, indicating the presence of the enzyme sulfide:quinone oxidoreductase (EC 1.8.5.-). Further investigations showed that the sulfide:quinone oxidoreductase activity was sensitive to heat and to quinone analogue inhibitors. The enzyme is strictly membrane-bound and is constitutively expressed. The presence of sulfide:quinone oxidoreductase points to a connection of sulfide oxidation to the membrane electron transport system at the level of the quinone pool in Chr. vinosum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...