Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Galactomannan  (6)
  • Germination (seeds)  (4)
  • 1
    ISSN: 1432-2048
    Keywords: Endosperm ; Galactomannan ; α-Galactosidase ; Germination (seed) ; Seed germination ; Trigonella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When endosperms were isolated from fenugreek seeds 5 h after sowing and incubated in a small volume of water, the development of α-galactosidase activity and the breakdown of the galactomannan storage polysaccharide were both inhibited relative to control endosperms incubated in larger volumes. The inhibition could be relieved by pre-washing the endosperms, and reimposed by the wash-liquors. If the endosperms were isolated 24 h after sowing, no inhibition was observed. Removal of the embryonic axis from germinating fenugreek seeds and from germinated seedlings also inhibited the development of α-galactosidase activity and galactomannan breakdown in the endosperms; the inhibition was more pronounced the earlier the axis was removed. Axis excision 5 h after sowing caused a delay in the onset of galactomannan breakdown and of the appearance of α-galactosidase activity in the endosperms. It also led to a decrease in the rates of galactomannan breakdown and α-galactosidase production. Axis excision 24 h after sowing caused only a slowing of the rates of galactomannan breakdown and α-galactosidase increase. The inhibition caused by axis removal at 5 h could be relieved partially by gibberellin (10-4 M), benzyladenine (10-5 M), mixtures of these and by the herbicide SAN 9789 [4-chloro-5-(methylamine)-2-(α,α,α-trifluoro-m-tolyl)-3-(2H)-pyridazinone]. These substances had no effect on the inhibition caused by axis-removal at 24 h. Excision of the cotyledons at 5 h-leaving the separated axis and the endosperm-also caused inhibition of galactomannan breakdown and α-galactosidase development. The results are consistent with the presence in the fenugreek seed endosperm of diffusible inhibitors of galactomannan mobilisation which are removed or inactivated during normal germination and early seedling development. They are also consistent with a role for the seedling axis in the control of galactomannan breakdown in the endosperm. Initially the axis appears to have a regulatory function (via gibberellins and/or cytokinins?) in determining the onset of α-galactosidase production in the endosperm. Thereafter its continued presence is necessary to ensure maximal rates of α-galactosidase production and galactomannan hydrolysis. The role of the axis may be initially to counteract the endogenous inhibitors in the endosperm and then to act as a sink for the galactomannan breakdown products released in the endosperm and taken up by the cotyledons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Galactomannan ; Endosperm ; Polysaccharide (biosynthesis, storage) ; Mannosyltransferase ; Seed (development) ; Trigonella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The time-course of galactomannan and stachyose (digalactosyl-sucrose) deposition in the fenugreek seed endosperm has been determined, and correlated with standard parameters of seed development. During, and only during, the period of galactomannan deposition, endosperm homogenates are capable of catalysing the transfer of labelled d-mannosyl residues from guanosine 5′-diphosphate d-[U-14C]mannose to a soluble polysaccharide product indistinguishable from galactomannan. The mannosyltransferase activity peaks twice, once at the beginning of galactomannan deposition, and again in the middle of the most rapid phase of galactomannan deposition. The enzyme in the later peak sediments with grossly particulate material (1,000 g pellet), whereas the earlier peak contains a considerable proportion of a particulate enzyme sedimenting at 100,000 g. These observations are discussed in the light of existing information on the ultrastructural aspects of galactomannan deposition. The mannosyltransferase is clearly involved in galactomannan formation in vivo, but the status of an accompanying galactosyltransferase is less clear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Arabinan ; Arabinogalactan ; Cell wall (storage polysaccharides) ; Galactan ; Germination (seeds) ; Hemicellulose ; Lupinus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Some 22% of the dry weight of the cotyledons of resting seeds of Lupinus angustifolius cv. Unicrop has been shown to be non-starch polysaccharide material comprising the massively thickened walls of the storage mesophyll cells. On hydrolysis this material released galactose (76%), arabinose (13%), xylose (4%), uronic acid (7%): only traces of glucose were detected indicating the virtual absence of cellulose from the walls. Changes in the amount and composition of this material following germination have been studied in relation to parameters of seedling development and the mobilisation of protein, lipid and oligosaccharide reserves. Starch, which was not present in the resting seed, appeared transitorily following germination: under conditions of continuous darkness starch levels were reduced. During the period of bulk-reserve mobilisation, 92% of the non-starch polysaccharide material disappeared from the cotyledons. The residual cell-wall material released galactose (14%), arabinose (19%), xylose (24%) and uronic acid (43%). The galactose and arabinose residues of the cotyledonary cell walls clearly constitute a major storage material, quantitatively as important as protein. The overall role of the wall polysaccharides in seedling development is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Planta 195 (1995), S. 489-495 
    ISSN: 1432-2048
    Keywords: Biosynthesis (computer simulation) ; Cell wall (plant) ; Cyamopsis ; Galactomannan ; Senna ; Trigonella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Membrane-bound enzymes from developing legume-seed endosperms catalyse galactomannan biosynthesis in vitro from GDP-mannose and UDP-galactose. A mannosyltransferase [mannan synthase] catalyses the extension of the linear (1→4)-β-linked d-mannan backbone towards the non-reducing end. A specific α-galactosyltransferase brings about the galactosyl-substitution of the backbone by catalysing the transfer of a (1→6)-α-d-galactosyl residue to an acceptor mannosyl residue at or close to the non-reducing terminus of the growing backbone. Labelled galactomannans with a range of mannose/galactose (Man/Gal) ratios were formed in vitro from GDP-[14C]mannose and UDP-[14C]galactose using membrane-bound enzyme preparations from fenugreek (Trigonella foenum-graecum L.), guar (Cyamopsis tetragonoloba (L.) Taub.) and senna (Senna occidentalis (L.) Link.), species which in vivo, form galactomannans with Man/Gal ratios of 1.1, 1.6 and 3.3 respectively. The labelled galactomannans were fragmented using a structure-sensitive endo-(1→4)-β-d-mannanase and the quantitative fragmentation data were processed using a computer algorithm which simulated the above model for galactomannan biosynthesis on the basis of a second-order Markov chain process, and also the subsequent action of the endo-mannanase. For each galactomannan data-set processed, the algorithm generated a set of four conditional probabilities required by the Markov model. The need for a second-order Markov chain description indicated that the galactomannan subsite recognition sequence of the galactosyltransferase must encompass at least three backbone mannose residues, i.e. the site of substitution and the two preceding ones towards the reducing end of the growing galactomannan chain. Data-sets from the three plant species generated three distinctly different sets of probabilities, and hence galactose-substitution rules. For each species, the maximum degree of galactose-substitution consistent with these rules was closely similar to that observed for the primary product of galactomannan biosynthesis in vivo. The data provide insight into the mechanism of action and the spatial organisation of membrane-bound polysaccharide synthases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Endosperm ; Germination (seeds) ; Lactuca ; Reserve hydrolysis ; Storage protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The timing of changes in total nitrogen and soluble amino nitrogen content, and in the activities of proteinase (pH 7.0), isocitrate lyase, catalase, phytase, phosphatase (pH 5.0), α-galactosidase and β-mannosidase were studied in extracts from the cotyledons, axis and endosperms of germinating and germinated light-promoted lettuce seeds. The largest amount of total nitrogen (2.7% seed dry weight) occurs within the cotyledons, as storage protein. As this decreases the total nitrogen content of the axis increases and the soluble amino nitrogen in the cotyledons and axis increases. Proteinase activity in the cotyledons increases coincidentally with the depletion of total nitrogen therein. Enzymes for phytate mobilisation and for gluconeogenesis of hydrolysed lipids increase in activity in the cotyledons as the appropriate stored reserves decline. Beta-mannosidase, an enzyme involved in the hydrolysis of oligo-mannans released by the action of endo-β-mannase on mannan reserves in the endosperm, arises within the cotyledons. This indicates that complete hydrolysis of mannans to the monomer does not occur within the endosperm. Mobilisation of all cotyledon reserves occurs after the endosperm has been degraded, providing further evidence that the endosperm is an early source of food reserves for the growing embryo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Endosperm ; Galactomannan ; Germination (seeds) ; Storage polysaccharide ; Trigonella ; Water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Some 30% of the reserve material in the fenugreek seed is galactomannan localised in the endosperm; the remainder is mainly protein and lipid in the cotyledons of the embryo. The importance of galactomannan to the germinative physiology of fenugreek has been investigated by comparing intact and endosperm-free seeds. From a purely nutritional point of view the galactomannan's rôle is not qualitatively different from that of the food reserves in the embryo. Nevertheless, due to its spatial location and its hydrophilic properties, the galactomannan is the molecular basis of a mechanism whereby the endosperm imbibes a large quantity of water during seed hydration and is able to “buffer” the germinating embryo against desiccation during subsequent periods of drought-stress. The galactomannan is clearly a dual-purpose polysaccharide, regulating water-balance during germination and serving as a substrate reserve for the developing seedling following germination. The relative importance of these two rôles is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Endosperm (galactomannan) ; Germination (seeds) ; Lipid ; Phytate ; Storage proteins ; Trigonella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in total nitrogen, soluble amino nitrogen, lipid and phytate contents, and in the activities of proteinase (pH 7.0), isocitrate lyase and phytase were followed in the endosperm, cotyledons, and axis during germination of fenugreek seeds and subsequent growth of the seedlings. The endosperm is comprised largely of cell-wall galactomannans: the majority of the seed total nitrogen, lipid and phytate (5%, 8%, 0.44% of seed dry weight respectively) is localised within the cotyledons as stored reserves. Germination is completed after 10–14 h from the start of imbibition, but the major reserves are not mobilised during the first 24 h. Then the total nitrogen content of the cotyledons starts to decrease and that of the axis increases; there is a concomitant accumulation of soluble amino nitrogen in both cotyledons and axis. An increase in proteinase activity in the cotyledons correlates well with the depletion of total nitrogen therein. Depletion of lipid and phytate reserves in the different seed tissues constitutes a late event, occurring after 50 h from the start of imbibition, and is coincident with the final disintegration of the endosperm tissue. The depletion of phytate and stored lipids is accompanied by an increase in phytase and isocitrate lyase activity. It appears that the products of lipid hydrolysis are converted by gluconeogenesis to serve as the major source of sugars for the growing axis after the endosperm galactomannan has been completely mobilised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Aleurone layer ; Endo-β-mannanase ; Endosperm ; Galactomannan ; Germination ; Leguminous seeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity ofendo-β-mannanase in the endosperm of fenugreek seeds at different stages of germination varies pari passu with storage galactomannan breakdown.Endo-β-mannanase is similarly associated with the galactomannan breakdown which occurs when isolated fenugreek half-endosperms are incubated under “germination” conditions. Metabolic inhibitors,acting on the aleurone layer reduceendo-β-mannanase production in the half-endosperms in proportion to their inhibition of galactomannan breakdown. It is concluded (a) thatendo-β-mannanase activity, like galactomannan breakdown, is regulated by the fenugreek aleurone layer and (b) that theendo-β-mannanase is almost certainly instrumental in bringing about galactomannanan hydrolysis in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Endosperm ; Galactomannan ; Secretion ; Ultrastructure ; Trigonella
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The mode of deposition (secretion) of galactomannan in the cells of the seed endosperm ofTrigonella foenum-graecum has been studied by electron microscopy. In cells which are just beginning to secrete galactomannan there are stacks of rough endoplasmic reticulum (ER). The intracisternal space (containing the enchylema) of the rough ER then swells, becomes vacuolated and forms a voluminous network, with “pockets” of cytoplasm entrapped within poculiform rough ER. The enchylema contains material which reacts with periodate-thiocarbohydrazidesilver proteinate in a very similar manner to the galactomannan already deposited in the cell wall. It appears that the galactomannan is formed in the intracisternal space of the rough endoplasmic reticulum and then expelled outside the plasmalemma. This mode of deposition contrasts with that of other plant cell wall polysaccharides whose secretion is mediated by Golgi vesicles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...