Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Disodium (1-hydroxythylidene) diphosphonate ; Glass-ceramics-containing apatite ; wollastonite ; Detachment test ; Calcium-phosphorus-rich layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary It has been reported that bioactive glass-ceramics containing crystalline oxy- and fluoroapatite [Ca10(PO4)6(O,F2) and wollastonite (CaSiO3), chemical composition: MgO 4.6, CaO 44.9, SiO2 34.2, P2O5 16.3, CaF2 0.5 in weight ratio] bond to bone tissue through the formation of an apatite (a calcium and phosphorus-rich layer) on the ceramic surface. In this study, the influence of disodium (1-hydroxythylidene) diphosphonate (DHTD) on the bonding between bone and glass-ceramics containing apatite and wollastonite was investigated. Rectangular ceramic plates (15 mm x 10 mm x 2 mm, abraded with #2000 alumina powder) were implanted into the tibial bone of mature male rabbits. DHTD was administered daily by subcutaneous injection to groups 1–5: group 1–4 at doses of 20, 5.0, 1.0, and 0.1 mg/kg body wt/day for 8 weeks; and group 5 at a dose of 5 mg/kg body wt/day for 4 weeks. Group 6 was given injections of saline as a control. At 8 weeks after implantation, the rabbits were killed. The tibiae containing the ceramics were dissected out and used for a detachment test. The failure load, when an implant became detached from the bone, or when the bone itself broke, was measured. The failure loads for groups 1–6 were 0 kg, 0 kg, 8.08±2.43 kg, 7.28±2.07 kg, 5.56±1.63 kg, and 6.38±1.30 kg, respectively. Ceramic bonding to bone tissue was inhibited by a higher dose of DHTD (groups 1 and 2). In groups 3–6, SEM-EPMA showed a calcium-phosphorus-rich layer (Ca-P-rich layer) at the interface between the ceramic and bone tissue. However, at higher doses (5 and 20 mg), the Ca-P-rich layer was not observed on the surface of the glass-ceramic. DHTD suppressed both the formation of the Ca-P-rich layer on the surface of galss-ceramics and also apatite formation by bone. Thus, bonding between the Ca-P-rich layer of glass-ceramics and the apatite of bone tissue did not occur. This study verified that the apatite crystals in bone tissue bonded chemically to the Ca-P-rich layer on the surface glass-ceramics. The organic matrix (osteoid) did not participate in the bonding between bone and glass-ceramics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 37 (1997), S. 554-565 
    ISSN: 0021-9304
    Keywords: alumina ; Bis-GMA ; composite ; mechanical properties ; osteoconduction ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: We have developed a composite (designated ABC), consisting of alumina bead powder as an inorganic filler and bisphenol-a-glycidyl methacrylate (Bis-GMA)-based resin as an organic matrix, which allows direct bone formation on its surface in vivo. Alumina bead powder was manufactured by fusing crushed α-alumina powder and quenching it. The beads took spherical form 3 μm in average size. According to powder X-ray diffraction and Fourier transform infrared spectroscopy, the alumina bead powder was composed of amorphous and δ-crystal phases of alumina in its main crystal structure. Fused-quenched silica glass-filled composite (SGC) was used as a control. The proportion of filler added to the composites was 70% w/w. Mechanical testing of the ABC indicated that it would be strong enough for use under weight-bearing conditions. No apatite formation was detected on the surfaces of either composite after soaking in simulated body fluid for 28 days in vitro. Histological examination of rat tibiae for up to 8 weeks revealed that ABC bonded to bone directly via a layer of calcium, phosphorus, and alumina with no interposed soft-tissue layer. Moreover, the amount of bone directly apposed to the ABC surface increased with time, whereas with SGC there was poor direct bone formation even at 8 weeks. The precise mechanism of direct bone formation on ABC is as yet unknown but it is possible that changes in the crystallinity of alumina, which is known to be highly biocompatible, contribute to its excellent osteoconductivity in vivo. Although bioactive materials such as Bioglass® or apatite and wollastonite-containing glass-ceramic have previously been reported to form bone-like apatite on their surfaces under acellular conditions via simple chemical reactions, ABC does not have such characteristics, and presenting favorable conditions for osteoconduction and tissue calcification may lead to direct bone formation on its surface in vivo. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 37, 554-565, 1997.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0021-9304
    Keywords: bioactive bone cement ; inhibitor ; accelerator ; mechanical properties ; bioactivity ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: We introduced an inhibitor to the polymerization reaction of bioactive bone cement (AWC) consisting of MgO - CaO - SiO2 - P2O5 - CaF2 apatite and wollastonite containing glass-ceramic powder and bisphenol-α-glycidyl methacrylate based resin, together with an increased amount of accelerator but without any prolongation of its setting time in order to improve the degree of polymerization and decrease the amount of incompletely polymerized monomers on the cement surface. A comparison was made between the AWC containing the inhibitor [AWC(I+)] and the AWC without it [AWC(I-)] with regard to setting parameters, mechanical properties, and surface reactivity in vitro and in vivo. The proportion of glass-ceramic powder added to the AWC was 70% (w/w). The total amount of heat generation and the peak temperature of the AWC(I+) during polymerization were slightly greater than those of the AWC(I-). The mechanical strength of AWC(I+) was higher than that of the AWC(I-) under wet conditions. In simulated body fluid, the width of the Ca-P rich layer on the surface of the AWC(I+) was less than that on the AWC(I-) after 28 days of immersion, although the rate of apatite formation on the top surface of the AWC(I+) was almost identical to that on the AWC(I-) surface. Histological examination using rat tibiae up to 26 weeks revealed that the bioactivity of the AWC(I+) was equivalent to that of the AWC(I-). Scanning electron microscopy and energy-dispersive X-ray microanalysis demonstrated that the Ca-P rich layer in the AWC(I+) was significantly narrower than that in the AWC(I-) at the same time points. These results indicate that introduction of the inhibitor improved the mechanical properties of the AWC and made the Ca-P rich layer narrower, but it had no adverse effect on bioactivity. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res (Appl Biomater) 43: 140-152, 1998
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0021-9304
    Keywords: bioactive bone cement ; AW glass-ceramic ; silica ; bioactivity ; mechanical properties ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Silica glass powder (SG-P) made by a fusing-quenching method was added as a second filler to a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 apatite and wollastonite containing glass-ceramic powder (AW-P) and bisphenol-a-glycidyl methacrylate (Bis-GMA)-based resin, to achieve a higher mechanical strength and better handling properties in use. Five types of cement were used, containing different weight ratios of AW-P/SG-P (Group 1 = 100/0; Group 2 = 75/25; Group 3 = 50/50; Group 4 = 25/75; and Group 5 = 0/100) as filler, to evaluate the effect of SG-P content on the biological, mechanical, and handling properties. The total proportion of filler added to the cements was 85% w/w. The compressive, bending, and tensile strengths and fracture toughness of the cements increased with SG-P content. The viscosity of cements also increased with SG-P content, and every cement could be handled manually. The cements were evaluated in vivo by packing the intramedullary canals of rat tibiae. An affinity index was calculated for each cement; this was the length of bone directly apposed to cement expressed as a percentage of the total length of the cement surface. Histological examination of implanted tibiae for up to 26 weeks showed that the affinity indices decreased with SG-P content and that those of all the cement groups increased with time. At 26 weeks, Groups 1 and 2 had almost identical affnity indices (79% and 75%; no significant difference) but those of the other groups remained at 〈50%. Group 2 had better mechanical and handling properties than Group 1, and an SG-P content in the filler of no more than 25% w/w did not interfere strongly with the bioactivity of the cement. © John Wiley & Sons, Inc. J Biomed Mater Res, 37, 68-80, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...