Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2242
    Keywords: Homoeologous chromosome pairing ; Ph1 pairing regulator ; Genome relationships ; Euhaploid ; Giemsa N-banding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 2∶1 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 872-877 
    ISSN: 1432-2242
    Keywords: Bread wheat ; Barley ; Intergeneric ; hybrid ; Homoeologous chromosome pairing ; Gene transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract As initial step in the transfer of dwarf bunt resistance from barley into wheat, the two cereal crops were hybridized. Using the wheat cultivars ‘Fukuhokomugi’ and ‘Chinese Spring’ (AABBDD genomes) as female parents and barley cultivar ‘Luther’ (II genome) as male, we synthesized 9 euploid hybrids (2n = 4x = 28; ABDI genomes). The hybrids were vigorous, but highly sterile. Meiotic analyses of seven hybrids showed considerable variation in chromosome pairing. Of the hybrids involving ‘Fukuhokomugi’ 3 had high pairing with a mean of 5.08–6.72 chiasmata per cell, while others had 2.16–3.52 chiasmata per cell. As many as 12 bivalents in some pollen mother cells would suggest at least some pairing between wheat and barley chromosomes. This level of homoeologous pairing, coupled with some, albeit low, female fertility of the F1 hybrids, could offer an opportunity for intergeneric gene transfers from barley into wheat and vice versa.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...