Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Montmorillonite  (2)
  • Hydration  (1)
  • Keywords Vanadyl phosphate-alkanol intercalates, Molecular mechanics, Structure analysis  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular modeling 6 (2000), S. 9-15 
    ISSN: 0948-5023
    Keywords: Keywords Vanadyl phosphate-alkanol intercalates, Molecular mechanics, Structure analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular mechanics simulations supported by X-ray powder diffraction measurements have been used to investigate the structure of vanadyl phosphate intercalated with 1-alkanols CnH2n+1OH for n = 2, 3, 4. Modeling revealed the specific features and differences in arrangement of alkanol molecules with different chain length, depending on the relation between the parameters of active sites network and size of guest molecules. This result enabled us to explain the irregularities in dependence of basal spacing on the chain length. The comparison of experimental dexp and calculated dcalc values of basal spacing showed the good agreement of modeling with x-ray powder diffraction. While we obtained dcalc(Univ) = 13.05 Å for vanadyl phosphate-ethanol using the Universal force field (dexp=13.17 Å), for vanadyl phosphate-propanol and vanadyl phosphate-butanol better agreement with experiment was obtained using the Tripos force field. In the case of vanadyl phosphate-propanol the calculated basal spacing dcalc(Tripos) = 14.49 Å, compared with an experimental value of dexp=14.36 Å. For vanadyl phosphate-butanol dcalc(Tripos) = 17.71 Å and dexp=17.90 Å.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0948-5023
    Keywords: Intercalated clays ; Tetramethylammonium-clays ; Modeling ; Molecular mechanics ; Montmorillonite ; Beidellite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Molecular mechanics simulations, combined with X-ray powder diffraction and infrared spectroscopy, have been used in structure analysis of montmorillonite and beidellite intercalated with tetramethylammonium cations. A complex structure analysis provided us with the detailed structure model, including characterization of the disorder, the total sublimation energy and a charge distribution in the structure of intercalates. The calculated basal spacings (14.36 Å for TMA-montmorillonite and 14.12 Å for TMA-beidellite) are in good agreement with the experimental values (14.31 Å for TMA-montmorillonite and 14.147 Å for TMA-beidellite). Both intercalated structures exhibit positional and orientational disorder in the arrangement of TMA cations, and consequently disorder in layer-stacking. In the present work we analyse the effect of octahedral and tetrahedral substitutions in a 2:1 silicate layer on the arrangement of tetramethylammonium (TMA) cations in the interlayer space of montmorillonite and beidellite. The most significant difference between TMA-montmorillonite and TMA-beidellite is in the charge distribution on the TMA cations and silicate layer. The TMA-beidellite structure is highly polarized, the total charge on one TMA cation is +0.167 e−, while the total charge on the TMA cation in montmorillonite is +0.050 e−.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular modeling 4 (1998), S. 176-182 
    ISSN: 0948-5023
    Keywords: Intercalation ; Montmorillonite ; Tetramethylammonium ; Trimethylphenylammonium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The intercalation of organoammonium cations into smectite structure is the important step in the technology of non-linear optical materials. In this study we investigated the structure of montmorillonite (MMT), intercalated with two organoammonium cations : tetramethylammonium (TMA) and trimethylphenylammonium (TMPA) using molecular mechanics simulations. The studies were focused to following aspects: arrangement of organoammonium cations in the interlayer, their positions and orientation with respect to silicate layers and their anchoring to the layers. The calculated (basal) d-spacings for MMT with TMA 14.29 Å and 15.36 Å for MMT with TMPA are in good agreement with X-ray diffraction data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 1999 (1999), S. 2289-2294 
    ISSN: 1434-1948
    Keywords: Intercalations ; Vanadyl phosphate ; Ethanol ; Hydration ; Kinetics ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The course of the replacement of ethanol by water molecules in the VOPO4·2C2H5OH intercalate, and of water by ethanol in VOPO4·2H2O has been studied by X-ray diffraction and infrared and Raman spectroscopy. Formation of mixed phase VOPO4·C2H5OH·H2O was not observed. The shape of the kinetics curves indicates a transition of at least one reaction zone through the crystal. A delay in formation of the product in comparison with the decrease in the amount of starting material can be explained by the existence of non-diffracting advancing phase boundary. In a VOPO4/ethanol/water system, VOPO4·2C2H5OH is formed as the only product when the system contained more than 96 vol% of ethanol, whereas in the system with less than 94 vol% of ethanol only VOPO4·2H2O is present.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...