Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 471-489 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Monosynaptic ; Excitation ; Inhibition ; Neck motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of neck motoneurons to electrical stimulation of the pontomedullary reticular formation were recorded intracellularly in cerebellectomized cats anesthetized with chloralose. Stimulation of nucleus reticularis (n.r.) ventralis and the dorsal part of n.r. gigantocellularis evoked short latency, monosynaptic inhibitory postsynaptic potentials (IPSPs) in the majority of motoneurons supplying the ipsilateral splenius, biventer cervicis and complexus muscles and in 25% of motoneurons projecting in the ipsilateral spinal accessory nerve. Monosynaptic IPSPs were also evoked by stimulating the medial longitudinal fasciculus (MLF) but lesion and collision experiments indicated that these IPSPs were independent of those evoked by reticular stimulation. Monosynaptic IPSPs were also occasionally observed following stimulation of the contralateral reticular formation, especially of the dorsal part of n.r. gigantocellularis. Monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in all classes of neck motoneurons studied by stimulation of n.r. pontis caudalis, gigantocellularis and ventralis. Each reticular nucleus appeared to contribute to this excitation. The excitation was bilateral but large monosynaptic EPSPs were most often seen in motoneurons ipsilateral to the stimulus site. Data indicated that pontine EPSPs were mediated by ventromedial reticulospinal fibers while medullary EPSPs were mediated by ventrolateral reticulospinal fibers. Neck motoneurons thus receive at least three distinct direct reticulospinal inputs, two excitatory and one inhibitory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 36 (1979), S. 1-20 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Excitation ; Inhibition ; Axial motoneurons ; Limb motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of motoneurons supplying muscles of the forelimbs, hindlimbs, back, and neck to stimulation of the medial pontomedullary reticular formation were studied with intracellular recording in cere-bellectomized cats under chloralose anesthesia. Stimulation of the midline or of a reticular region consisting of nucleus reticularis (n.r.) pontis caudalis and the dorsorostral part of n.r. gigantocellularis produced monosynaptic excitation of ipsilateral motoneurons supplying axial muscles and flexor and extensor muscles in both proximal and distal parts of the limbs. This widespread excitation appears to have been produced by rapidly conducting medial reticulospinal fibers. Stimulation of a second region consisting of n.r. ventralis and the ventrocaudal part of n. r. gigantocellularis produced monosynaptic excitation of ipsilateral neck and back motoneurons but only longer latency, apparently multisynaptic excitation of limb motoneurons. Collision tests indicated that this monosynaptic excitation did not involve fibers descending along the midline. It therefore appears to have been produced by lateral reticulospinal fibers. Reticular stimulation also produced short latency, monosynaptic inhibition of neck motoneurons, long latency, apparently polysynaptic inhibition of limb motoneurons and intermediate latency inhibition of back motoneurons. The latencies and properties of inhibitory responses of back motoneurons indicated that they were produced either disynaptically by fast fibers or monosynaptically by slower fibers. The data indicate that the medial pontomedullary reticular formation can be divided into a number of different zones each with a distinct pattern of connections with somatic motoneurons. These include the dorsorostrally located medial reticulospinal projection area, from which direct excitation of a wide variety of motoneurons can be evoked, the ventrocaudally located lateral reticulospinal projection area from which direct excitation of neck and back and direct inhibition of neck motoneurons can be evoked and the dorsal strip of n.r. gigantocellularis which has direct excitatory and inhibitory actions only on neck motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 40 (1980), S. 131-145 
    ISSN: 1432-1106
    Keywords: Interstitiospinal neurons ; Vestibular system ; Semicircular canal inputs ; Axon branching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Interstitiospinal neurons were activated by antidromic stimulation of the ventromedial funiculus of the spinal cord at C1 and C4 in cerebellectomized cats under chloralose anesthesia. 46% of these neurons responded only at C1 (N cells) and the remaining 54% responded at C4 also (D cells). There is no topographical difference in the location of N and D cells. Conduction velocities of N cells were significantly slower than those of D cells. 2. Stimulation of the contralateral whole vestibular nerve evoked firing of 31% of both N and D cells; some responded early enough to suggest disynaptic connections, many responded late. Stimulation of the ipsilateral whole vestibular nerve evoked firing of several cells, one spontaneously discharging D cell was inhibited. 3. Stimulation of the contralateral individual semicircular canal nerves evoked firing of 33% of N cells and 13% of D cells. Most of these responses were late. N cells responded not only to the vertical canals but also to the horizontal canal, whereas D cells responded to the horizontal canal, but seldom to the vertical ones. Most canal responding neurons received specific input, only two N cells received convergent input from both the anterior and horizontal canals. Stimulation of the ipsilateral canals did not evoke excitation of any cells tested; one D cell was inhibited by stimulation of the horizontal canal nerve. 4. Stimulation of the rostral medial vestibular nucleus evoked characteristic negative field potentials centered in the contralateral interstitial nucleus of Cajal (INC). Approximately 60% of both N and D cells received excitation from the contralateral vestibular nuclei. About 17% of these responding neurons received monosynaptic excitation, most frequently from the rostral medial nucleus. Stimulation of the ipsilateral vestibular nuclei evoked firing of 12% of both N and D cells. 5. Twenty-nine neurons were fired antidromically by weak stimuli applied to the ipsilateral vestibular nuclei. Twenty-seven of the 29 were activated only from C1 and were found in the INC (10 cells) and in the reticular formation dorsal to the INC (19 cells). Measurement of the spread of the effect of stimulus current and comparison of latencies to stimulation of the vestibular nuclei and C1 indicated that these neurons have axon collaterals going to the ipsilateral vestibular nuclei. Only one of them received excitation from the contralateral posterior canal, others did not respond to the labyrinth. Some were activated by stimulation of the vestibular nuclei.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Head posture ; Interstitial nucleus of Cajal ; Neck EMG ; Vestibular system ; Pontine reticular formation ; HRP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary (1) Experiments were performed in cats to examine effects of lesion of the interstitial nucleus of Cajal (INC) on head posture and the responsible pathway. Unilateral INC lesions resulted in lateral tilt of the head to the opposite side, and bilateral INC lesions resulted in dorsiflexion of the head as reported earlier. Such characteristic head posture was produced by successful kainic acid injections as well as by electrolytic lesions, suggesting that it was not due to damage of nerve fibers passing through the INC, but was produced most probably by damage of nerve cells in the INC. Electromyographic (EMG) recordings in unilateral INC-lesioned cats showed that activity was higher in the ipsilateral than in the contralateral major dorsal neck muscles (biventer, splenius, complexus, and rectus), and also higher in the contralateral than in the ipsilateral obliquus capitis caudalis muscle. The pattern of EMG activity was basically similar either when the cats presented typical head tilt or when their head was fixed to the frame at the stereotaxic plane. Characteristic head posture resulting from INC lesions seems consistent with the head posture produced by activation of these muscles. (2) Interruption of the medial and lateral vestibulospinal tracts did not significantly influence head tilt that had been produced by INC lesions. Characteristic head tilt was produced by INC lesions after cats had received bilateral labyrinthectomies, bilateral lesions of most of the vestibular nuclei, and bilateral aspiration of the cerebellar vermis and most of the lateral vestibular nuclei, indicating that typical head tilt can be produced without the vestibular nuclei and cerebellar vermis. (3) The medial longitudinal fasciculus (MLF) was interrupted at different levels to cut the major descending fibers from the INC. MLF interruption at the caudal midbrain produced typical head tilt, although MLF cut at the caudal pons and medulla was ineffective. Bilateral parasagittal cuts lateral to the MLF in the pons produced severe dorsiflexion of the head, and a subsequent unilateral INC lesion produced no further head tilt. These results suggest that fibers originating in the INC, removal of which is responsible for the typical head tilt, run through the MLF in the midbrain, and leave it in the pontine level. (4) After injections of HRP into the INC and closely surrounding reticular formation, anterogradely labeled fibers were seen in the ipsilateral rostral pontine MLF, and many of them entered the pontine reticular formation which corresponds to the caudal part of the nucleus reticularis (n.r.) pontis oralis and the rostral part of the n.r. pontis caudalis. In electrophysiological experiments, many neurons were antidromically activated in the INC region by weak stimuli confined to the ipsilateral rostral pontine reticular formation. Many cells were found within the INC and surrounding reticular formation. These results suggest that interruption of the INC projection to the rostral pontine reticular formation may be responsible for the characteristic head tilt produced by INC lesions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: Interstitial nucleus of Cajal ; Burst-tonic neuron ; Vertical eye movement ; Vertical semicircular canal ; Electrical stimulation ; Latency ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recent studies have shown that the interstitial nucleus of Cajal (INC) in the midbrain reticular formation is involved in the conversion of vertical semicircular canal signals into eye position during vertical vestibuloocular reflexes. Secondary vestibulo-ocular relay neurons related to the vertical canals, which constitute the majority of output neurons sending signals from the vestibular nuclei directly to the oculomotor nuclei, have been shown to project axon collaterals to the region within and near the INC. To understand how the INC is involved in the signal conversion, latencies of response of neurons in the INC region to electrical stimulaton of the vestibular nerve were examined in alert cats. The responses of 96 cells whose activity was clearly modulated by sinusoidal pitch rotation (at 0.31 Hz) were analyzed. These included 41 cells whose activity was closely correlated with vertical eye movement (38 burst-tonic and 3 tonic neurons), and 55 other cells (called pitch cells as previously). Twenty nine of the 96 cells (30%) were activated at disynaptic latencies following single shock stimulation of the contralateral vestibular nerve. Disynaptically activated cells were significantly more frequent for pitch cells than for eye movement-related cells (25/55 = 45% vs 4/41 = 10%; p 〈 0.001, Chi-square test). Conversely, cells that did not receive short-latency activation (〈 6 ms) were more frequent among eye movement-related cells than pitch cells (26/41 = 63% vs 13/55 = 24%; p 〈 0.001, Chi-square test). Pitch cells showed significantly less phase lag (re head acceleration) than eye movement-related cells during sinusoidal pitch rotation (mean ± SD 124° ± 17° vs 138° ± 14°. p 〈 0.01, t-test). These results suggest that 1) cells in the INC region other than burst-tonic and tonic neurons mainly receive direct inputs from secondary vestibulo-ocular relay neurons, and that 2) vertical canal signals reach eye movement-related neurons mainly polysynaptically.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Midbrain reticular formation ; Interstitio-vestibular neurons ; Vestibular system ; Semicircular canal inputs ; Axon branching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Experiments were performed on cats anesthetized with a chloralose to locate neurons in and around the interstitial nucleus of Cajal (INC) that project to the vestibular nuclei, and to study labyrinthine inputs to these neurons. Neurons that project to the vestibular nuclei were identified by microstimulation confined to the vestibular nuclei on both sides. All neurons thus identified were activated antidromically from the ipsilateral (but not contralateral) vestibular nuclei. Vestibular projecting neurons were found in the INC and the reticular formation rostral, dorsal and caudal to the INC. About 23% of these neurons were vestibular branching spinal projecting neurons. The median conduction velocity of vestibular projecting neurons was estimated to be in the neighborhood of 12–16 m/s. Stimulation of the contralateral vestibular nerve evoked firing in 29% of neurons projecting to the vestibular nuclei, but not to the spinal cord. Interstitial neurons responded more frequently than reticular neurons (45% vs 11%, χ2 test, p 〈 0.001). By stimulation of individual semicircular canal nerves, it was shown that vestibular projecting neurons receive excitation from the contralateral vertical canals, but do not receive substantial inputs from the horizontal canal. Stimulation of the ipsilateral vestibular nerve excited 10% of neurons; suppression of activity was observed for six cells and four of the six were excited by stimulation of the contralateral vestibular nerve. Stimulation of ipsilateral individual semicircular canal nerves did not excite any cells tested; the activity of a few cells was suppressed by stimulation of the vertical canal nerves. One neuron received excitation from the contralateral anterior canal and suppression from the ipsilateral posterior canal. Vestibular branching spinal projecting neurons rarely received labyrinthine inputs as already reported (Fukushima et al. 1980a). These results suggest that vestibular projecting neurons may be involved in vertical vestibular reflexes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 121 (1998), S. 92-98 
    ISSN: 1432-1106
    Keywords: Key words Saccade ; Latency ; Fixation ; Smooth pursuit ; Gap ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  To examine the effects of smooth-pursuit eye movements on the initiation of saccades, their latency was measured when subjects initially fixated or pursued a target. In half of the block of trials, the fixation or pursuit target was extinguished 200 ms before the saccade target was illuminated (gap trials). Reduction of the mean saccade latency in the gap trials (the “gap effect”) was evident even when the subjects were pursuing a moving target, consistent with previous observations. The effect of pursuit direction on saccade latency was also examined. Saccades in the same direction as the preceding pursuit (forward saccades) had shorter latencies than those in the opposite direction (backward saccades). This asymmetry was observed in both the gap and nongap trials. Although the forward-backward asymmetry was much smaller than the “gap effect”, it was statistically significant in six of eight cases. These results suggest that the preparation of saccades is affected by smooth-pursuit eye movements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...