Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 36 (1979), S. 1-20 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Excitation ; Inhibition ; Axial motoneurons ; Limb motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of motoneurons supplying muscles of the forelimbs, hindlimbs, back, and neck to stimulation of the medial pontomedullary reticular formation were studied with intracellular recording in cere-bellectomized cats under chloralose anesthesia. Stimulation of the midline or of a reticular region consisting of nucleus reticularis (n.r.) pontis caudalis and the dorsorostral part of n.r. gigantocellularis produced monosynaptic excitation of ipsilateral motoneurons supplying axial muscles and flexor and extensor muscles in both proximal and distal parts of the limbs. This widespread excitation appears to have been produced by rapidly conducting medial reticulospinal fibers. Stimulation of a second region consisting of n.r. ventralis and the ventrocaudal part of n. r. gigantocellularis produced monosynaptic excitation of ipsilateral neck and back motoneurons but only longer latency, apparently multisynaptic excitation of limb motoneurons. Collision tests indicated that this monosynaptic excitation did not involve fibers descending along the midline. It therefore appears to have been produced by lateral reticulospinal fibers. Reticular stimulation also produced short latency, monosynaptic inhibition of neck motoneurons, long latency, apparently polysynaptic inhibition of limb motoneurons and intermediate latency inhibition of back motoneurons. The latencies and properties of inhibitory responses of back motoneurons indicated that they were produced either disynaptically by fast fibers or monosynaptically by slower fibers. The data indicate that the medial pontomedullary reticular formation can be divided into a number of different zones each with a distinct pattern of connections with somatic motoneurons. These include the dorsorostrally located medial reticulospinal projection area, from which direct excitation of a wide variety of motoneurons can be evoked, the ventrocaudally located lateral reticulospinal projection area from which direct excitation of neck and back and direct inhibition of neck motoneurons can be evoked and the dorsal strip of n.r. gigantocellularis which has direct excitatory and inhibitory actions only on neck motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 33 (1978), S. 565-581 
    ISSN: 1432-1106
    Keywords: Interstitial nucleus of Cajal ; Monosynaptic excitation ; Neck motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Responses of neck motoneurons to stimulation of the interstitial nucleus of Cajal (INC) were recorded intracellularly in cats under chloralose anesthesia. When stimuli were applied within or close to the INC, short latency, monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in many neck motoneurons. Such EPSPs were not evoked by stimulating mesencephalic regions outside the INC. 2. Stimulation of the ipsilateral INC produced monosynaptic EPSPs consistently in biventer cervicis-complexus (BCC) motoneurons, while such EPSPs were observed in about two thirds of the splenius (SP) motoneurons and half of the trapezius (TR) motoneurons tested. Stimulation of the contralateral INC produced weak monosynaptic EPSPs in about half the BCC motoneurons and in a few SP and TR motoneurons. All types of motoneurons also received longer latency, apparently polysynaptic, PSPs from both INCs. In BCC and TR motoneurons these were mainly EPSPs, in SP, mixed excitatory and inhibitory PSPs. 3. Monosynaptic EPSPs evoked by INC stimulation were not eliminated by acute and chronic parasagittal and transverse lesions placed to interrupt the bifurcating axons of all vestibulospinal and many reticulospinal neurons. No significant collision was observed between EPSPs evoked by INC and vestibular or reticular stimulation. The EPSPs evoked by stimulation of the INC therefore appear to have been produced by activation of interstitiospinal neurons rather than by an axon reflex mechanism. 4. The properties of a number of interstitiospinal neurons were observed while recording extracellularly from the mesencephalon to map the location of the INC. One third of the interstitiospinal neurons activated antidromically from the C4 segment could also be activated antidromically from L1. These lumbar-projecting neurons had conduction velocities ranging from 15–123 m/s. Several interstitiospinal neurons sending axons to the ventral horn of the neck segments were identified and two of these were found to be branching neurons that projected both to the neck and to lower levels of the spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 23 (1975), S. 333-351 
    ISSN: 1432-1106
    Keywords: Reticulospinal neurons ; Axon branching ; Microstimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Extracellular microelectrodes were used to record the activity of reticulospinal neurons within the medial ponto-medullary reticular formation in the cat. In one series of experiments reticulospinal neurons were activated from electrodes in the ventro-medial reticulospinal tract (RSTm) and in the ipsiand contralateral lateral reticulospinal tracts (RSTi, RSTC) at spinal levels C1–2, C4, Th1 and L1. RSTm neurons were found primarily in n.r. pontis caudalis and the rostro-dorsal part of n.r. gigantocellularis. 71% of these neurons projected as far as the lumbar spinal cord. RSTi neurons projecting to C4 and beyond were clustered in the caudo-ventral part of n.r. gigantocellularis, but those RSTi neurons projecting to the first three cervical segments were located more rostro-dorsally. In all, 63% of the RSTi neurons projected to the lumbar spinal cord. RSTc neurons, which comprised only 5% of the reticulospinal population, were found throughout n.r. gigantocellularis. RSTm neurons had a median conduction velocity of 101 m/sec whereas RSTi and RSTc had median conduction velocities on the order of 70 m/sec. In a second series of experiments microstimulation was used to activate branches of reticulospinal neurons within the gray matter of the cervical enlargement. Twenty-two of thirty-three neurons found to project to the cervical ventral horn were branching neurons that also sent axons to the lumbar spinal cord. Thus much of the reticulospinal activity reaching the cervical enlargement also acts at one or more other spinal levels. Detailed investigation of the course of reticulospinal axons within the cervical gray matter indicated that a single axon may traverse wide areas of the ventral horn including regions on both sides of the spinal cord.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 37 (1979), S. 605-608 
    ISSN: 1432-1106
    Keywords: Motoneuron ; Forelimb ; Hindlimb ; Back
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of motoneurons supplying muscles of the forelimbs, hindlimbs, and back to stimulation of the interstitial nucleus of Cajal (INC) were recorded intracellularly in cats under chloralose anesthesia. Stimulation of the ipsilateral and contralateral INC evoked predominantly excitatory postsynaptic potentials in these motoneurons. Response latencies and properties of responses to multiple shock stimuli indicated that the responses were evoked by a di- or polysynaptic pathway. Stimulation of the anterior MLF (P2), which should have activated the entire interstitiospinal tract, but few reticulospinal or vestibulospinal fibers, evoked only polysynaptic responses. These results indicate that the INC does not establish direct synaptic connections with limb and back motoneurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 32 (1978), S. 471-489 
    ISSN: 1432-1106
    Keywords: Reticulospinal ; Monosynaptic ; Excitation ; Inhibition ; Neck motoneurons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Responses of neck motoneurons to electrical stimulation of the pontomedullary reticular formation were recorded intracellularly in cerebellectomized cats anesthetized with chloralose. Stimulation of nucleus reticularis (n.r.) ventralis and the dorsal part of n.r. gigantocellularis evoked short latency, monosynaptic inhibitory postsynaptic potentials (IPSPs) in the majority of motoneurons supplying the ipsilateral splenius, biventer cervicis and complexus muscles and in 25% of motoneurons projecting in the ipsilateral spinal accessory nerve. Monosynaptic IPSPs were also evoked by stimulating the medial longitudinal fasciculus (MLF) but lesion and collision experiments indicated that these IPSPs were independent of those evoked by reticular stimulation. Monosynaptic IPSPs were also occasionally observed following stimulation of the contralateral reticular formation, especially of the dorsal part of n.r. gigantocellularis. Monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in all classes of neck motoneurons studied by stimulation of n.r. pontis caudalis, gigantocellularis and ventralis. Each reticular nucleus appeared to contribute to this excitation. The excitation was bilateral but large monosynaptic EPSPs were most often seen in motoneurons ipsilateral to the stimulus site. Data indicated that pontine EPSPs were mediated by ventromedial reticulospinal fibers while medullary EPSPs were mediated by ventrolateral reticulospinal fibers. Neck motoneurons thus receive at least three distinct direct reticulospinal inputs, two excitatory and one inhibitory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...