Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Langenbeck's archives of surgery 373 (1988), S. 12-29 
    ISSN: 1435-2451
    Keywords: Microcirculation ; Local hyperthermia ; Melanoma ; Vasoconstriction ; Intravital microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung In Malignomen besteht aufgrund unzureichender Capillarisierung Minderperfusion und Gewebehypoxie. Die Wärmesensibilität maligner Tumoren, insbesondere des malignen Melanoms, ist jedoch gerade in hypoxischen Arealen deutlich erhöht. Da als Ursache gesteigerter Thermosensibilität in vivo hyperthermiespezifische Effekte in der Mikrozirkulation maligner Tumoren vermutet werden, war das Ziel dieser Untersuchungen die Quantifizierung von Veränderungen der Tumoroxygenierung und der mikrohämodynamischen Parameter unter lokaler Hyperthermie. 45 syrischen Goldhamstern wurde eine transparente Kammer in die Rückenhaut und zwei Dauerkatheter in A. carotis und V. jugularis implantiert. Nach 48 h erfolgte die Implantation von 4 × 104 Zellen des amelanotischen Hamstermelanoms A-Mel-3 auf das in der Kammer befindliche s.c. Gewebe. 5 Tage nach Tumorimplantation, bei einem Tumordurchmesser von 3 mm, wurde der lokale PO2 (Platinmehrdrahtoberflächenelektrode) auf dem Tumor gemessen; in separaten Versuchen wurde die Mikrozirkulation vitalmikroskopisch beobachtet und quantitativ mittels Fernseh- und Mikropunktionstechniken analysiert. Messungen wurden bei 30°C sowie 15 min nach Erreichen einer Tumortemperatur von 35° und 42,5°C durchgeführt. Ein Anstieg der Tumortemperatur auf 35 °C resultierte in einer Steigerung der Perfusion von Tumorcapillaren um 35%. Dabei war der Druck in Arteriolen unverändert, in Venolen sank dieser signifikant von 11,0± 1,1 auf 7,4±0,6 mmHg. Der Druckabfall in Venolen bewirkte eine Erhöhung des arteriolo-venolären Druckgradienten, wobei die systemischen Drucke weiter unverändert waren. 15 min nach Erreichen von 42,5°C im Tumor betrug die Blutzellgeschwindigkeit im Zentrum des Tumors in 50% der Capillaren weniger als 0,1 mm/s, der mittlere Gewebe-PO2 war auf 6,1 mmHg abgefallen, 52% der lokalen PO2-Werte waren zwischen 0 und 5 mmHg. Zudem stieg der intravasale Druck in Postcapillaren und Sammelvenolen um 5 mmHg an. Vitalmikroskopisch wurden im Tumor petechiale Blutungen, postcapilläre und capilläre Stase sowie — bei Bestehen der capillären Stase über mehr als 10 min — eine ausgepr:agte Konstriktion aller den Tumor versorgenden Gefäße beobachtet. Gleichzeitig wurde elektronenmikroskopisch — vor allem an capillarnahen Tumorzellen — eine Schwellung von Mitochondrien sowie die Destruktion von Tumorzellen evident. Zur Desintegration des Endothels von Tumorcapillaren kam es jedoch erst nach 40 min Hyperthermie von 42,5°C.Schlußfolgerung: Die Mikrozirkulation maligner Tumoren ist wärmeempfindlicher als die normale Mikrozirkulation. Dies bedeutet, daß 1. die hyperthermiebedingte Obstruktion der Mikrozirkulation die Tumordestruktion in vivo deutlich beschleunigen könnte, denn die Zerstörung von capillarnahen Tumorzellen wurde bereits nach 10 min Hyperthermie auf 42,5°C beobachtet, während das Endothel von Tumorcapillaren noch weitgehend intakt war, 2. Temperaturen von weniger als 40°C dann bevorzugt angewandt werden sollten, wenn Hyperthermie gleichzeitig mit anderen onkologischen Therapiemodalitäten kombiniert wird, 3. die arterioläre Konstriktion, die trotz massivster Gewebehypoxie nach lokaler Hyperthermie im amelanotischen Melanom bestehen blieb, nicht nur die capilläre Durchblutung weiter reduzierte, sondern den Tumor für 72 h von der Perfusion durch den Systemkreislauf ausschloß. Daher können Cytostatica, die während dieses Zeitabschnittes verabreicht werden, den Tumor nicht erreichen.
    Notes: Summary Hypoxic regions of malignant tumors are poorly vascularized; they appear to be more susceptible to hyperthermia in vivo than tumor cells in vitro after an exposure to heat. In an attempt to explain this discrepancy, changes of microcirculatory flow in the tumor have been proposed as key mechanism for destroying adjacent tumor cells in particular. This study was conducted to define the impact of the microcirculation on tumor destruction after local hyperthermia. A transparent chamber was implanted in the dorsal skin fold and two permanent indwelling catheters placed in carotid artery and jugular vein of 45 Syrian golden hamsters. 48 h later, 4 × 104 cells of the amelanotic melanoma A-Mel-3 were implanted into the s.c. tissue covered by the chamber. 5 days later, at a tumor diameter of 3 mm, the microcirculation of this tumor was studied using intravital microscopy, a platinum multiwire electrode, television as well as micropuncture techniques for the determination of local PO2 microcirculatory blood flow and microvascular pressure. Measurements were taken at 30° C and 15 min after reaching a tumor temperature of 35° and 42.5°C. When heating up the melanoma to 35 °C, an increase in capillary perfusion by 35% was noted. With an apparent maximum of capillary perfusion, there was no change in arteriolar pressure but a significant drop in venular pressure from 11.0± 1.1 to 7.4±0.6 mmHg resulting in an increase of the arteriolo-venular pressure gradient while the systemic pressures were unchanged. At a tumor temperature of 42.5°C, prestasis and stasis became apparent in capillaries and collecting venules. This was accompanied by a rise in capillary and venular pressure by 5 mmHg. At the same time, pronounced tissue hypoxia was present in the tumor with more than 50% of the values within the hypoxic range between 0 and 5 mmHg. Despite tissue hypoxia, the constriction of all tumor arterioles became evident 15–30 min after reaching a tumor temperature of 42.5°C. The deterioration of tumor oxygenation was associated with damage of tumor cells such as swelling and destruction of mitochondria which was seen under the electron microscope. After 40 min at 42.5°C, the attenuation of the endothelial lining around the entire vascular perimeter was seen in tumor capillaries.Conclusion: The tumor microcirculation seems to be more sensitive to heat than the normal microcirculation. This implies that 1. the heat induced breakdown of the tumor microcirculation could explain the accelerated tumor destruction in vivo because tumor cells were already damaged 10 min after heat application with the destruction of tumor cells significantly preceding the changes at the capillary wall, 2. moderate heating (〈40°C) should be preferred if hyperthermia is combined simultaneously with other treatment modalities, 3. the tumor is virtually excluded from the systemic circulation at a tumor temperature of 42.5°C since a pronounced arteriolar constriction was seen to persist for 72 h. Thus, cytotoxic drugs will not reach the tumor via the vasculature during this period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...