Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 90 (1992), S. 47-53 
    ISSN: 1432-1106
    Schlagwort(e): Energy metabolism ; Free nucleotides ; Ischemia ; Brain ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Loss of cellular ion homeostasis during anoxia, with rapid downhill fluxes of K+, Ca2+, Na+ and Cl-, is preceded by a slow rise in extracellular K+ concentration (K e + ), probably reflecting early activation of a K+ conductance. It has been proposed that this conductance is activated by either a rise in intracellular calcium concentration (Ca i 2+ ), or by a fall in ATP concentration. In a previous study from this laboratory (Folbergrová et al. 1990) we explored whether the early activation of a K+ conductance could be triggered by a rise in Ca i 2+ . To that end, labile metabolites and phosphorylase a, a calcium sensitive enzyme, were measured after 15, 30, 60 and 120 s of complete ischemia (“anoxia”). In the present study, we investigated whether brief anoxia is accompanied by changes in ATP/ADP ratio, or in the phosphate potential, which could cause activation of a K+ conductance. To provide information on this issue, we added a group with 45 s of anoxia to the previously reported groups, and derived changes in intracellular pH (pHi). This allowed calculations of the free concentrations of ADP (ADPf) and AMP (AMPf) from the creatine kinase and adenylate kinase equilibria, and hence the derivation of ATP/ADPf ratios. In performing these calculations we initially assumed that the free intracellular Mg2+ concentration remained unchanged at 1 mM. However we also explored how a change in Mg i 2+ of the type described by Brooks and Bachelard (1989) influenced the calculation. The results showed that ADPf must have risen to 150–200% of control within 15 s, and to 330–350% of control within 45 s of anoxia. The concentration of AMPf should have increased 2–4 fold in 15 s and 10–20 fold in 45 s. Thus although tissue ATP concentration usually remains 〉90% of control within the first 30s of anoxia, and 〉80% of control within the first 45 s, the ATP/ADPf ratios change markedly at a time when alterations in ion homeostasis are dominated by a moderate rise in K e + , and long before massive ion fluxes occur and the cells depolarise (after about 60–70 s). Such early changes in ATP/ADPf ratio, or in phosphate potential, could well influence reactions which are coupled to ATP hydrolysis, and perhaps lead to activation of ATP-dependent K+ conductances.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-1106
    Schlagwort(e): Ischemia ; Brain damage ; Substantia nigra pars reticulata ; Excitatory amino acids ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Preischemic hyperglicemia worsens brain damage after ischemia, and characteristically leads to post-ischemic seizures and a pan-necrotic lesion in substantia nigra pars reticulata (SNPR). The excitatory input to SNPR could contribute to the damage observed. By performing a unilateral frontal cortex lesion 6–19 days prior to the ischemia, we wanted to explore whether a decrease in excitatory input to the ipsilateral SNPR ameliorate the seizures or alter the light microscopical damage in SNPR. Our results demonstrate that unilateral frontal cortex lesion did not alter the development of fatal post-ischemic seizures after 10 min of ischemia in hyperglycemic subjects. Thus, 7/8 animals developed seizures and died within 20 h of recovery. This study also failed to show any difference between the left and right side in post-ischemic SNPR damage after 15 h of recovery in animals with preischemic unilateral frontal cortex lesion. Furthermore, no side difference was observed in any other brain region evaluated. The results thus suggest that the pan-necrotic lesion in SNPR after hyperglicemic ischemia is not caused by excessive excitatory input from frontal cortex. A decrease in the GABA-ergic inhibitory input from caudoputamen to SNPR may be a more important mechanism for the ensuing excitotoxic post-ischemic SNPR damage, and for seizure development.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1432-1106
    Schlagwort(e): Ischemia ; Hypoglycemia ; Calcium transient ; Insulin ; Rat
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract The primary objective of this study was to explore why preischemic hypoglycemia, which restricts tissue acidosis during the ischemic insult, does not ameliorate cell damage incurred as a result of transient ischemia. The question arose whether hypoglycemia (plasma glucose concentration 2–3 mM) delays resumption of extrusion of Ca2+ from cells during recirculation. Measurements of extracellular Ca2+ concentration during forebrain ischemia of 15 min duration proved that this was the case. Thus, normoglycemic animals resumed Ca2+ extrusion upon recirculation after a delay of 1.5–2.0 min, and hypoglycemic ones after an additional delay which could amount to 3–4 min. We attempted to explore the cause of this delay. At first sight, the results suggested that resumption of oxidative phosphorylation upon recirculation was substrate limited. However, glucose infusion during ischemia or just after recirculation failed to accelerate Ca2+ extrusion from the cells. A comparison between non-injected and insulin-injected animals at equal plasma glucose concentrations suggested that insulin was responsible for the delay. On analysis, the delay proved to be related to a sluggish recovery of cerebral blood flow. The results suggest that when cell damage is evaluated after transient ischemia in hypo- and normoglycemic subjects, attention should be directed to the period of cell calcium ‘overload’. Unobserved differences in the duration of the calcium transient may also confound interpretation of data on the effects of insulin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...