Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Glutamine synthetase ; Isoenzymes ; Nodulation ; Phaseolus ; Plumule ; Root nodule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the legume Phaseolus vulgaris L., glutamine synthetase (GS) (EC.6.3.1.2.) occurs as three cytosolic polypeptides, α, β and γ, and a plastidic polypeptide, δ. This paper describes the subunit composition of active octameric GS isoenzymes from root nodules and plumules using ionexchange high-performance liquid chromatography followed by two-dimensional denaturing gel electrophoresis and Western immunodetection. Root nodules contained four separable GS activities, three of which were composed mainly of cytosolic γ, γ/β and β GS polypeptides, whereas the fourth activity, consisted of plastidic δ GS polypeptides. The increase in GS activity during nodulation was due largely to the appearance of γ-containing isoenzymes, and to a lesser extent on the δ isoenzyme, whereas the β-isoenzyme activity remained approximately constant throughout. Plumule GS from imbibed seeds was found to be composed of separate α and β isoenzymes, but 2 d after germination, plumule GS consisted of a mixture of α, α/β and β isoenzymes. The results from both nodules and plumules indicate that different cytosolic GS polypeptides in P. vulgaris are able to assemble into both homo-octameric and heterooctameric isoenzymes. Moreover, the changes in the patterns of isoenzymes observed during nodule development and plumule growth are interpreted to be caused both by temporal changes in the denovo synthesis of the polypeptides and also by their spatial separation in different cell types.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Glutamine synthetase ; Legume ; Rhizobium symbiosis ; Nitrogen assimilation ; Phaseolus (glutamine synthetase) ; Rhizobium ; Root nodule
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two forms of glutamine synthetase (GS) have been purified to apparent homogeneity from the plant fraction of Phaseolus vulgaris root nodules. One of these forms appears identical to the form of the enzyme found in roots but the other is probably specifically associated with the nodule. Free-living Rhizobium phaseoli also contain two forms of GS both of which have different molecular weights from the plant enzymes. Bacteroids contain solely the higher-molecular-weight form of rhizobial GS. There are only minor differences between the plant enzymes in Km or S0.5 values for the synthetase-reaction substrates and both forms have identical molecular weights of the holoenzyme (380,000 daltons) and its sub-units (41,000 daltons). They can be separated by ion-exchange chromatography on diethylaminoethyl-Sephacel and by native polyacrylamide-gel electrophoresis. The only other distinguishing feature observed is that the ratio of transferase: synthetase activity of the root form is threefold greater than that of the nodule-specific GS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Glutamine synthetase ; Leghaemoglobin ; Nitrogenase ; Nitrogen fixation ; Phaseolus ; Rhizobium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activities of glutamine synthetase (GS), nitrogenase and leghaemoglobin were measured during nodule development in Phaseolus vulgaris infected with wild-type or two non-fixing (Fix-) mutants of Rhizobium phaseoli. The large increase in GS activity which was observed during nodulation with the wild-type rhizobial strain occurred concomitantly with the detection and increase in activity of nitrogenase and the amount of leghaemoglobin. Moreover, this increase in GS was found to be due entirely to the appearance of a novel form of the enzyme (GSn1) in the nodule. The activity of the form (GSn2) similar to the root enzyme (GSr) remained constant throughout the experiment. In nodules produced by infection with the two mutant strains of Rhizobium phaseoli (JL15 and JL19) only trace amounts of GSn1 and leghaemoglobin were detected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...