Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Anthracnose ; Disease resistance (grapevine) ; Proembryogenic mass ; Vitis (disease resistance)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract.  Proembryogenic masses of grapevine (Vitis vinifera L.) `Chardonnay' (clone 02Ch) were exposed to the culture filtrate of Elsinoe ampelina (deBary) Shear, the causal agent of anthracnose disease. After four or five cycles of recurrent in-vitro selection with medium containing 40% fungal culture filtrate, putative resistant lines RC 1 and RC 2 respectively, were established. The selected lines inhibited the growth of E. ampelina and Fusarium oxysporium (Schlecht.) (isolated from watermelon) in a dual-culture assay and reduced the growth of mycelium on a conditioned-medium test, thus suggesting the involvement of extracellular compounds in resistance. Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis of extracellular proteins from spent suspension-culture medium showed enhanced secretion of new proteins by selected lines. A 36-kDa protein was immunodetected by a chitinase antiserum. This chitinase continued to express constitutively in differentiated somatic embryos and also in the intercellular fluids of plants regenerated from the selected lines. Somatic embryos from selected lines grew uninhibitedly in a medium containing 40% fungal culture filtrate, whereas non-selected (control) somatic embryos became necrotic and died within a few days. Plants regenerated from selected lines exhibited resistance to infection by E. ampelina in both greenhouse tests and detached leaf bioassays. Results suggest that embryogenic cells can be selected for resistance following in-vitro selection, resulting in resistant plants. Whether or not resistant cells pre-existed in the original embryogenic culture or were induced by the selection pressure could not be determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-9368
    Keywords: peanut ; engineered virusresistance ; tomato spotted wiltvirus ; transformation ; nucleocapsid ; gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nucleocapsid gene of tomato spotted wilt virus Hawaiian L isolate in a sense orientation, and the GUS and NPTII marker genes, were introduced into peanut (Arachis hypogaea cv. New Mexico Valencia A) using Agrobacterium-mediated transformation. Modifications to a previously defined transformation protocol reduced the time required for production of transformed peanut plants. Transgenes were stably integrated into the peanut genome and transmitted to progeny. RNA expression and production of nucleocapsid protein in transgenic peanut were observed. Progeny of transgenic peanut plants expressing the nucleocapsid gene showed a 10- to 15-day delay in symptom development after mechanical inoculations with the donor isolate of tomato spotted wilt virus. All transgenic plants were protected from systemic tomato spotted wilt virus infection. Inoculated non-transformed control plants and plants transformed with a gene cassette not containing the nucleocapsid gene became systemically infected and displayed typical tomato spotted wilt virus symptoms. These results demonstrate that protection against tomato spotted wilt virus can be achieved in transgenic peanut plants by expression of the sense RNA of the tomato spotted wilt virus nucleocapsid gene
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...