Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Key words Filled polymer  (1)
  • Shear flow  (1)
  • contraction and expansion flow  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 32 (1993), S. 181-191 
    ISSN: 1435-1528
    Keywords: Two-dimensional flow ; viscoelastic plastic medium ; yield surface ; contraction and expansion flow ; pressure drop
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The present study is concerned with finite element simulation of the planar entry flow of a viscoelastic plastic medium exhibiting yield stress. The numerical scheme is based on the Galerkin formulation. Flow experiments are carried out on a carbon black filled rubber compound. Steady-state pressure drops are measured on two sets of contraction or expansion dies having different lengths and a constant contraction or expansion ratio of 4:1 with entrance angles of 90, 45 and 15 degrees. The predicted and measured pressure drops are compared. The predicted results indicate that expansion flow has always a higher pressure drop than contraction flow. This prediction is in agreement with experimental data only at low flow rates, but not at high flow rates. The latter disagreement is possibly an indication that the assumption of fully-developed flow in the upstream and downstream regions is not realistic at high flow rates, even for the large length-to-thickness ratio channels employed. The evolution of the velocity, shear stress, and normal stress fields in the contraction or expansion flow and the location of pseudo-yield surfaces are also calculated.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 28 (1989), S. 176-189 
    ISSN: 1435-1528
    Keywords: Shear flow ; orthogonalsuperposition ; largeamplitudeoscillations ; harmonicanalysis ; Leonov model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The orthogonal superposition of small and large amplitude oscillations upon steady shear flow of elastic fluids has been considered. Theoretical results, obtained by numerical methods, are based on the Leonov viscoelastic constitutive equation. Steady-state components, amplitudes and phase angles of the oscillatory components of the shear stress, the first and second normal stress differences as functions of shear rate, deformation amplitude and frequency have been calculated. These oscillatory components include the first and third harmonic of the shear stresses and the second harmonic of the normal stresses. In the case of small amplitude superposition, the effect of the steady shear flow upon the frequency-dependent storage modulus and dynamic viscosity has been determined and compared with experimental data available in literature for polymeric solutions. The predicted results have been found to be in fair agreement with the experimental data at low shear rates and only in qualitative agreement at high shear rates and low frequencies. A comparison of the present theoretical results has also been made with the predictions of other theories. In the case of large amplitude superposition, the effect of oscillations upon the steady shear flow characteristics has been determined, indicating that the orthogonal superposition has less influence on the steady state shear stresses and the first difference of normal stresses than the parallel superposition. However, in the orthogonal superposition a more pronounced influence has been observed for the second difference of normal stresses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 36 (1997), S. 66-81 
    ISSN: 1435-1528
    Keywords: Key words Filled polymer ; rheological model ; yield function ; structure function ; steady flow ; transient flow ; oscillatory flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract A viscoelastic plastic model for suspension of small particles in polymer melts has been developed. In this model, the total stress is assumed to be the sum of stress in the polymer matrix and the filler network. A nonlinear viscoelastic model along with a yield criterion were used to represent the stresses in the polymer matrix and the filler network, respectively. The yield function is defined in terms of differential equations with an internal parameter. The internal parameter models the evolution of structure changes during floc rupture and restoration. The theoretical results were obtained for steady and oscillatory shear flow and compared with experimental data for particle filled thermoplastic melt. The experimental data included the steady state shear strress over a wide range of shear rates, the transient stress in a start up shear flow, stress relaxation after cessation of a steady state shear flow, the step shear and the oscillatory shear flow at various amplitudes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...