Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Key words Triamterene ; Amiloride ; Na+ channel ; Epithelia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The three subunits (α, β, γ) encoding for the rat epithelial Na+ channel (rENaC) were expressed in Xenopus oocytes, and the induced Na+ conductance was tested for its sensitivity to various triamterene derivatives. Triamterene blocked rENaC in a voltage-dependent manner, and was 100-fold less potent than amiloride at pH 7.5. At −90 mV and −40 mV, the IC50 values were 5 μM and 10 μM, respectively. The blockage by triamterene, which is a weak base with a pK a of 6.2, was dependent on the extracellular pH. The IC50 was 1 μM at pH 6.5 and only 17 μM at pH 8.5, suggesting that the protonated compound is more potent than the unprotonated one. According to a simple kinetic analysis, the apparent inhibition constants at −90 mV were 0.74 μM for the charged and 100.6 μM for the uncharged triamterene. The main metabolite of triamterene, p-hydroxytriamterene sulfuric acid ester, inhibited rENaC with an approximately twofold lower affinity. Derivatives of triamterene, in which the p-position of the phenylmoiety was substituted by acidic or basic residues, inhibited rENaC with IC50 values in the range of 0.1–20 μM. Acidic and basic triamterenes produced a rENaC blockade with a similar voltage and pH dependence as the parent compound, suggesting that the pteridinemoiety of triamterene is responsible for that characteristic. Expression of the rENaC α-subunit-deletion mutant, Δ278–283, which lacks a putative amiloride-binding site, induced a Na+ channel with a greatly reduced affinity for both triamterene and amiloride. In summary, rENaC is a molecular target for triamterene that binds to its binding site within the electrical field, preferably as a positively charged molecule in a voltage- and pH-dependent fashion. We propose that amiloride and triamterene bind to rENaC using very similar mechanisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...