Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Keywords Beta-cell dysfunction, mitochondrial metabolism, mitochondrial DNA, exocytosis, ATP, cytosolic Ca2+, mitochondrial Ca2+, ϱ0 cells, HNF-1α, MODY.  (1)
  • Keywords Mitochondrial DNA  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 43 (2000), S. 265-277 
    ISSN: 1432-0428
    Keywords: Keywords Beta-cell dysfunction, mitochondrial metabolism, mitochondrial DNA, exocytosis, ATP, cytosolic Ca2+, mitochondrial Ca2+, ϱ0 cells, HNF-1α, MODY.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Insulin is stored in secretory granules in the beta-cell and is secreted by exocytosis. This process is precisely controlled to achieve blood glucose homeostasis. Many forms of diabetes mellitus display impaired glucose-induced insulin secretion. This has been shown to be the primary cause of the disease in the various forms of maturity-onset diabetes of the young (MODY) and has also been implicated in adult-onset Type II (non-insulin-dependent) diabetes mellitus. Glucose generates ATP and other metabolic coupling factors in the beta-cell mitochondria. By plasma membrane depolarisation ATP promotes Ca2+ influx, which raises cytosolic Ca2+ and triggers insulin exocytosis. Through hyperpolarisation of the mitochondrial membrane glucose also increases the Ca2+ concentration in the mitochondrial matrix activating Ca2+-sensitive dehydrogenases in the tricarboxylic acid cycle. The resulting generation of glutamate participates in Ca2+-stimulated exocytosis. Mitochondrial DNA (mtDNA) encodes some of the polypeptides of the respiratory chain enzyme complexes. Mutations in mtDNA lead to maternally inherited diabetes mellitus characterised by impaired insulin secretion. The impact of altered mtDNA on insulin secretion has been shown in mtDNA-deficient beta-cell lines which have lost glucose-stimulated insulin secretion but retain a Ca2+-induced insulin secretion. A cellular model of MODY3 expressing dominant-negative hepatocyte nuclear factor-1α (HNF-1α) also displayed deletion of glucose-induced but not Ca2+-induced insulin secretion. Reduced mitochondrial metabolism explains this secretory pattern. Thus, genetically manipulated beta-cell lines are essential tools in the investigation of the molecular basis of beta-cell dysfunction in diabetes and should explain the role of other transcription factors in the disease. [Diabetologia (2000) 43: 265–277]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0428
    Keywords: Keywords Mitochondrial DNA ; diabetes mellitus ; deafness ; haplotype ; mutation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. An A to G transition at nucleotide position 3243 in the mitochondrial tRNA Leu(UUR) gene has been identified in patients with maternally inherited diabetes and deafness, as well as in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, chronic progressive external ophpthalmoplegia, cardiomyopathy and progressive kidney disease. Variations in the mitochondrial DNA haplotype as well as differences in the degree and distribution of heteroplasmy in a certain tissue are factors that may contribute to the variety in phenotypical expression of the 3243 tRNA Leu(UUR) mutation. We have done morphological and functional experiments on mitochondria carrying the 3243 mutation derived from patients with either maternally inherited diabetes and deafness or progressive kidney disease to prove the pathogenicity of the 3243 mutation and to examine whether the mtDNA haplotype modulates the pathobiochemistry of this mutation. Methods. We constructed clonal cell lines that contain predominantly mutated or exclusively wild-type mtDNA with a distinct mtDNA haplotype by the methodology of mitochondria-mediated transformation. Cells lacking mitochondrial DNA (ϱ°) were used as recipients and donor mitochondria were derived from fibroblasts of a patient with either maternally inherited diabetes and deafness or progressive kidney disease. The fibroblasts from these clinically distinct patients carry different mitochondrial DNA haplotypes with the 3243 mutation in heteroplasmic form. Results. Heteroplasmy in the clonal cybrid cells ranged from 0 to 100 %, reflecting the heterogeneity of the mitochondrial donor cell. Cybrid cells containing predominantly mutant mitochondrial DNA showed lactic acidosis, poor respiration and marked defects in mitochondrial morphology and respiratory chain complex I and IV activities. No differences were observed in the extent of the mitochondrial dysfunction between the mutant cells derived from the two donors. Conclusion/interpretation. These results provide evidence for a pathogenic effect of the tRNA Leu(UUR) mutation in maternally inherited diabetes and deafness and progressive kidney disease, and show no evidence of a contribution of the mitochondrial DNA haplotype as a modulating the biochemical expression of the mutation. [Diabetologia (1999) 42: 485–492]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...