Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 18 (1979), S. 1288-1292 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Biochemistry 20 (1981), S. 1020-1025 
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0428
    Keywords: Leprechaunism ; insulin receptor ; insulin resistance ; autophosphorylation ; insulin binding ; glucose tolerance tests
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Recently, we described a leprechaun patient with a genetically transmitted severe insulin resistance due to the absence of functional insulin receptors as inferred from the loss of insulin binding to the patients' fibroblasts and the impaired autophosphorylation of the β-chain of the receptor. This patient was homozygous for the genetic defect which was recently found to be a leucine to proline mutation at position 233 in the α-chain of the insulin receptor. In the present study we have examined insulin receptor functions in relatives of this patient. Some of these individuals are heterozygous for the genetic defect and have only one allele coding for a functional insulin receptor. Insulin binding to cultured fibroblasts from the heterozygous individuals is only 20–40% of control values indicating a Mendelian mode of inheritance of the binding defect. In contrast, insulin stimulated autophosphorylation of the β-chain of the insulin receptor shows normal values, indicating compensation mechanisms operating on this process. The stimulation of the basal level of 2-deoxyglucose uptake by insulin in fibroblasts from the homozygous patient is 1.2 fold whereas the heterozygous and control individuals show stimulation values of approximately 1.65 fold. Basal levels of 2-deoxyglucose uptake are similar in these fibroblasts. Oral glucose tolerance tests on the heterozygous individuals indicate an increased requirement for insulin of the target tissues as concluded from the tendency towards hyperinsulinaemia with no observed hyperglycaemia. The results show that individuals with a genetic lesion in the insulin receptor which leads to decreased insulin binding, have mild abnormalities in their glucose tolerance tests but do not seem to develop hyperglycaemia as seen in Type 2 (non-insulin-dependent) diabetes mellitus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0428
    Keywords: Amylin ; islet amyloid polypeptide ; glucose production ; glucose uptake ; in vivo ; clamp ; counterregulatory hormones ; insulin action ; insulin receptor ; diabetes mellitus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Amylin is a polypeptide of 37 amino acids, predominantly synthesized in pancreatic Beta cells. The peptide was suggested to be dysregulated in Type 2 (non-insulin-dependent) diabetes mellitus and it antagonized certain actions of insulin in vitro in rat muscle. This led to speculation that amylin is involved in the pathogenesis of Type 2 diabetes. We have examined the in vivo effects of rat amylin, amidated at the carboxy-terminus, on insulin-mediated carbohydrate metabolism in conscious rats, using the hyperinsulinaemic (±1 nmol/l) euglycaemic (6 mmol/l) clamp technique combined with [3-3H]-glucose infusion. Basal plasma amylin levels were ≤75 pmol/l. Applied amylin levels of 220±75 pmol/l (infusion rate of 12.5 pmol/min) antagonized only the insulin action on liver, resulting in a 100% increase of hepatic glucose output. Amylin levels of 4750±750 pmol/l (infusion rate of 125 pmol/min) induced a 250% increase of insulin-inhibited hepatic glucose output and, in addition, a 30% decrease of insulin-stimulated peripheral glucose uptake. Amylin did not affect: 1) the metabolic clearance rate of insulin, 2) the levels of plasma glucagon, epinephrine, norepinephrine, and corticosterone, 3) in vitro insulin binding and insulin-stimulated receptor autophosphorylation. This suggests that amylin antagonizes insulin action via binding to a yet unknown receptor. In conclusion: amylin causes in vivo insulin resistance and the liver seems the predominant organ regulated by this hormone. The in vivo effects of amylin mimic the pathophysiological abnormalities of insulin action in Type 2 diabetes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 40 (1997), S. 1242-1242 
    ISSN: 1432-0428
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0428
    Keywords: Keywords Mitochondrial DNA ; diabetes mellitus ; deafness ; haplotype ; mutation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. An A to G transition at nucleotide position 3243 in the mitochondrial tRNA Leu(UUR) gene has been identified in patients with maternally inherited diabetes and deafness, as well as in patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, chronic progressive external ophpthalmoplegia, cardiomyopathy and progressive kidney disease. Variations in the mitochondrial DNA haplotype as well as differences in the degree and distribution of heteroplasmy in a certain tissue are factors that may contribute to the variety in phenotypical expression of the 3243 tRNA Leu(UUR) mutation. We have done morphological and functional experiments on mitochondria carrying the 3243 mutation derived from patients with either maternally inherited diabetes and deafness or progressive kidney disease to prove the pathogenicity of the 3243 mutation and to examine whether the mtDNA haplotype modulates the pathobiochemistry of this mutation. Methods. We constructed clonal cell lines that contain predominantly mutated or exclusively wild-type mtDNA with a distinct mtDNA haplotype by the methodology of mitochondria-mediated transformation. Cells lacking mitochondrial DNA (ϱ°) were used as recipients and donor mitochondria were derived from fibroblasts of a patient with either maternally inherited diabetes and deafness or progressive kidney disease. The fibroblasts from these clinically distinct patients carry different mitochondrial DNA haplotypes with the 3243 mutation in heteroplasmic form. Results. Heteroplasmy in the clonal cybrid cells ranged from 0 to 100 %, reflecting the heterogeneity of the mitochondrial donor cell. Cybrid cells containing predominantly mutant mitochondrial DNA showed lactic acidosis, poor respiration and marked defects in mitochondrial morphology and respiratory chain complex I and IV activities. No differences were observed in the extent of the mitochondrial dysfunction between the mutant cells derived from the two donors. Conclusion/interpretation. These results provide evidence for a pathogenic effect of the tRNA Leu(UUR) mutation in maternally inherited diabetes and deafness and progressive kidney disease, and show no evidence of a contribution of the mitochondrial DNA haplotype as a modulating the biochemical expression of the mutation. [Diabetologia (1999) 42: 485–492]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 37 (1994), S. 1169-1170 
    ISSN: 1432-0428
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 39 (1996), S. 375-382 
    ISSN: 1432-0428
    Keywords: Genetics ; maternally inherited diabetes and deafness ; NIDDM ; IDDM ; mitochondria ; MELAS syndrome
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Diabetes mellitus is a common disease with many forms of clinical expression. In addition, the development of diabetic complications is not only dependent on glycaemic control but also on individual factors which may be related to genetic heterogeneity. At present, multiple genetic factors are being recognized as contributing to the development of diabetes or possibly modulating its clinical expression. The purpose of this review is to give an overview of our current knowledge on a subtype of diabetes which is apparently caused by a single mutation in the mitochondrial DNA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Diabetologia 39 (1996), S. 375-382 
    ISSN: 1432-0428
    Keywords: Keywords Genetics ; maternally inherited diabetes and deafness ; NIDDM ; IDDM ; mitochondria ; MELAS syndrome.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Diabetes mellitus is a common disease with many forms of clinical expression. In addition, the development of diabetic complications is not only dependent on glycaemic control but also on individual factors which may be related to genetic heterogeneity. At present, multiple genetic factors are being recognized as contributing to the development of diabetes or possibly modulating its clinical expression. The purpose of this review is to give an overview of our current knowledge on a subtype of diabetes which is apparently caused by a single mutation in the mitochondrial DNA. [Diabetologia (1996) 39: 375–382]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...