Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 445-452 
    ISSN: 0887-3585
    Keywords: chorismate mutase ; activity ; allosteric ; electrostatics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The predicted active site of chorismate mutase of baker's yeast Saccharomyces cerevisiae has been studied by continuum electrostatics, molecular surface/volume calculations, and molecular modeling. Our study shows that despite being subject to an allosteric transition, the enzyme's active-site pocket neither decreased in volume nor deformed significantly in shape between the active R state and the inactive T state. We find that the polar atmosphere in the pocket is responsible for the enzyme's affinity. A single amino acid, Glu23, can adequately account for the atmospheric variation. This residue swings into the active-site pocket from the R state to the T state. In the R state, Glu23 on helix H2 doubly pairs with Arg204 and Lys208 of H11, which is packed against H2. In the T state, a slide occurs between H11 and H2 such that Glu23 can no longer interact with Lys208 and competes with Asp24 for interacting with Arg204. Consequently, Glu23 is found in the T state to couple with Arg157, an active-site residue critical to substrate binding. The tandem sliding of H11 in both monomers profoundly changes the interactions in the dimer interface. The loop between H11 and H12 demonstrates the largest conformational change. Hence, we establish a connection between the allosteric transition and the activity of the enzyme. The conformational change in the transition is suggested to propagate into the active-site pocket via a series of polar interactions that result in polarity reversal in the active-site pocket, which regulates the enzyme's activity. Proteins 31:445-452, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant ecology 149 (2000), S. 195-205 
    ISSN: 1573-5052
    Keywords: Beijing ; Cluster analysis ; Donglingshan Mountain ; Landscape classification ; Spatial neighboring ; TWINSPAN
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two methods were employed to find spatial regularity in a complicated mountain landscape of Beijing, China on the basis of functional and structural affinities. The first approach applied Affinity Analysis based on species composition to landscape. The mosaic diversity of the landscape was 3.5298〉3, which means the study landscape is complex and controlled by multiple environmental gradients. These landscape types were divided into 3 parts according to the mean affinity values of 0.2143 and 0.7857 (0.5±1 SD). Modal sites are the central types of the landscape, which include a zonal broad-leaved forest of the region and a conifer plantation replacing the former. Outliers are found in the highest altitude and the lowest, both have few species in common with the above two modal types. The remaining landscape types are intermediate sites, which are transitional between modals and outliers, broadly distributed throughout mountain environments. Neighbor types have more species in common than those more widely separated, which probably distributed adjacently in space or in similar quality habitat. The other method employed is the new TWINSPAN analysis by substituting spatial neighboring data of landscape types for species composition data. It clearly divided the landscape types into three groups, i.e., subalpine, middle and low mountain groups, which were correlated with altitude, as well as influenced by human disturbance. The new TWINSPAN classification method is more reliable in finding spatial gradient of patchy landscapes than affinity analysis; however, affinity analysis is useful in finding species diversity pattern and the importance of landscape types in a region. Integrating advantages of the two methods could supply complete and reliable information on how landscape types are distributed in space, which environmental gradient dominates the spatial distribution of the landscape types, as well as where important and unusual types are located.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...