Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Life and Medical Sciences  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 222 (1994), S. 241-267 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The position and structure of the olfactory organ and its openings vary among actinopterygians. The anterior nasal opening is a simple perforation in the skin in many extant actinopterygians (e.g., acipenseriforms, lepisosteids, and primitive Recent teleosts) and represents the primitive condition. Polypterids and Amia each exhibit a derived condition, in which the anterior nasal opening extends into a tube. The olfactory organ is relatively far away from the anterior end of the elongate rostrum in acipenseriforms, whereas the olfactory organs are closer to the anterior end of the snout in extant actinopterygians (e.g., polypterids, lepisosteids, and amiids). In adults, olfactory organs are cuplike structures in most actinopterygians, but these organs are tubelike in polypterids. Among extant actinopterygians, a nasal diverticulum is present only in polypterids. Teleosts have accessory nasal sacs, but chondrosteans, polypterids, lepisosteids, and amiids lack them.The olfactory rosette is formed by primary folds or lamellae that may be placed anterior, lateral, posterior, and/or medial to the axis of the organ. Large acipenserids have 20-32 lamellae, polyodontids have 13-18 lamellae, lepisosteids have 8-10 lamellae, and Amia may have over 100. In teleosts, the number of lamellae varies from none or a few to over 200. Secondary lamellae are present in acipenseriforms, lepisosteids, and some advanced teleosts; secondary lamellae are interpreted as independently acquired in these lineages. Secondary lamellae are absent in Amia and primitive teleosts such as Elops and Hiodon. Tertiary lamellae are present in Acipenser oxyrhynchus. The arrangement of the primary lamellae in relation to the axis of the organ results in at least 11 patterns of the olfactory rosette in actinopterygians. Lamellae that are enclosed in a tubelike sac and that have an anteromedial diverticulum are specializations of polypterids. Primary lamellae anterior, lateral, and posterior to an elongate axis are characteristic of lepisosteids. The presence of primary lamellae lateral, medial, and posterior to an elongate olfactory axis is a synapomorphy of Halecomorpha (Amia plus teleosts). The absence of secondary lamellae is a synapomorphy of Halecomorpha. © 1994 Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...