Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 195 (1988), S. 257-303 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The vertebral centra of Hiodon, Elops, and Albula are direct perichordal ossifications (autocentra) which enclose the arcocentra as in Amia. An inner ring of ovoid cells forms in late ontogeny from the intervertebral space inside the autocentrum. The chordacentrum is reduced or completely absent in centra of adult Elops, whereas it forms an important portion of the centra in adult Hiodon. The posterior portion of the compound ural centrum 3+4+5 is partially (Hiodon) or fully formed by the chordacentrum (Elops, Albula). The haemal arches and hypurals are fused medially by cartilage or bone trabecles of the arcocentrum with the centra, even though they appear autogenous in lateral view in Elops and Albula. The composition of the caudal skeleton of fossil teleosts and the ontogeny of that of Hiodon, Elops, and Albula corroborate a one-to-one relationship of ural centra with these dorsal and ventral elements. The first epural (epural 1) of Elops relates to ural centrum 1, whereas the first epural (epural 2) of Hiodon and Albula relates to ural centrum 2. In Albula, the first ural centrum is formed by ural centrum 2 only. With 4 uroneurals Hiodon has the highest number within recent teleosts. Juvenile specimens of Hiodon have eight, the highest number of hypurals within recent teleosts; this is the primitive condition by comparison with other teleosts and pholidophorids. Reduction of elements in the caudal skeleton is an advanced feature as seen within elopomorphs from Elops to Albula. Such reductions and fusions occur in osteoglossomorphs also, but the lack of epurals and uroneurals separates most osteoglossomorphs (except Hiodon) from all other teleosts.
    Zusätzliches Material: 28 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 205 (1990), S. 193-218 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Studies of ontogenetic series of trichomycterids and other catfishes reveal that the suspensorium of siluroids is highly specialized; several synapomorphies separate siluroids from other teleosts. In siluroids, the palatoquadrate is divided into pars autopalatina and pars pterygoquadrata and both are usually connected by the autopaiatine-metapterygoid ligament. The pterygoquadrate is broadly joined to the dorsal limb of the hyoid arch, forming a cartilaginous hyomandibular-symplectic-pterygoquadrate plate in early ontogeny. This produces a special alignment of the hyomandibula and quadrate which is characteristic of siluroids. A symplectic bone is absent. The interhyal is absent in trichomycterids and astroblepids. Dorsal and ventral limbs of the hyoid arch are connected by a ligament. A rudimentary interhyal and this ligament are present in primitive siluroids such as diplomystids and nematogenyids as well as loricariids. The metapterygoid arises as an anterior ossification of the pars pterygoquadrata in siluroids. The formation and position of the metapterygoid exhibit two patterns: (1) the metapterygoid develops as an ossification of a cartilaginous projection positioned between the future hyomandibula and quadrate in primitive catfishes (e.g., Diplomystes) as well as in Nematogenys, callichthyids, loricariids, and astroblepids; (2) the metapterygoid arises as an ossification of the cartilaginous projection (pterygoid process) positioned just above the articular facet of the quadrate for the lower jaw. An ossified anterior chondral pterygoid process of the complex quadrate is present in trichomycterids, whereas the process is absent (simple quadrate) in catfishes such as diplomystids, nematogenyids, callichthyids, and loricariids. The anterior membranous process of the quadrate of Astroblepus is non-homologous with the chondral pterygoid process of trichomycterids; both structures arose independently within the loricarioids. Despite topological relationships, the origin and development of bones reveal the presence of a chondral hyomandibula which develops a large meinbranous outgrowth during ontogeny and a chondral metapterygoid in trichomycterids. The presence of a compound hyomandibula + metapterygoid or a compound metapterygoid + ectopterygoid + entopterygoid have no developmental support in trichomycterines or other siluroids. The “entopterygoid” of Nematogenys and Diplomystes arises as an ossification of a ligament. The dermal entopterygoid of other ostariophysans and the “entopterygoid” are homologous. An ectopterygoid or tendon bone “ectopterygoid” is absent in loricarioids. The suspensorium is an important structural system which has significant evolutionary transformations which characterize loricarioid subgroups; however, no character, of the suspensorium supports the monophyly of the loricarioids.
    Zusätzliches Material: 16 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 214 (1992), S. 187-249 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The ontogenetic development of caudal vertebrae and associated skeletal elements of salmonids provides information about sequence of ossification and origin of bones that can be considered as a model for other teleosts. The ossification of elements forming the caudal skeleton follows the same sequence, independent of size and age at first appearance. Dermal bones like principal caudal rays ossify earlier than chondral bones; among dermal bones, the middle principal caudal rays ossify before the ventral and dorsal ones. Among chondral bones, the ventral hypural 1 and parhypural ossify first, followed by hypural 2 and by the ventral spine of preural centrum 2. The ossification of the dorsal chondral elements starts later than that of ventral ones. Three elements participate in the formation of a caudal vertebra: paired basidorsal and basiventral arcocentra, chordacentrum, and autocentrum; appearance of cartilaginous arcocentra precedes that of the mineralized basiventral chordacentrum, and that of the perichordal ossification of the autocentrum. Each ural centrum is mainly formed by arcocentral and chordacentrum. The autocentrum is irregularly present or absent. Some ural centra are formed only by a chordacentrum. This pattern of vertebral formation characterizes basal teleosts and primitive extant teleosts such as elopomorphs, osteoglossomorphs, and salmonids.The diural caudal skeleton is redefined as having two independent ural chordacentra plus their arcocentra, or two ural chordacentra plus their autocentra and arococentra, or only two ural chordacentra. A polyural caudal skeleton is identified by more than two ural centra, variably formed as given for the diural condition. The two ural centra of primitive teleosts may result from early fusion of ural centra 1 and 2 and of ural centra 3 and 4, or 3, 4, and 5 (e.g., elopomorphs), respectively. The two centra may corespond to ural centrum 2 and 4 only (e.g., salmonids). Additionally, ural centra 1 and 3 may be lost during the evolution of teleosts. Additional ural centra form late in ontogeny in advanced salmonids, resulting in a secondary polyural caudal skeleton.The hypural, which is a haemal spine of a ural centrum, results by growth and ossification of a single basiventral ural arococentrum and its haemal spine. The proximal part of the hypural always includes part of the ventral ural arcocentrum. The uroneural is a modification of a ural neural arch, which is demonstrated by a cartilaginous precursor. The stegural of salmonids and esocids originates from only one paired cartilaginous dorsal arcocentrum that grows anteriorly by a perichondral basal ossification and an anterodorsal membranous ossification. The true epurals of teleosts are detached neural spines of preural and ural neural arches as shown by developmental series; they are homologous to the neural spines of anterior vertebrae. Free epurals without any indication of connection with the dorsal arococentra are considered herein as an advanced state of the epural. Caudal distal radials originate from the cartilaginous distal portion of neural and haemal spines of preural and ural (epurals and hypurals) vertebrae. Therefore, they result from distal growth of the cartilaginous spines and hypurals. Cartilaginous plates that support rays are the result of modifications of the plates of connective tissue at the posterior end of hypurals (e.g., between hypurals 2 and 3 in salmonids) and first preural haemal spines, or from the distal growth of cartilaginous spines (e.g., epural plates in Thymallus).Among salmonids, conditions of the caudal skeleton such as the progressive loss of cartilaginous portions of the arcocentra, the progressive fusion between the perichondral ossification of arcocentra and autocentra, the broadening of the neural spines, the enlargement and interdigitation of the stegural, and other features provide evidence that Prosopium and Thymallus are the most primitive, and that Oncorhynchus and Salmo are the most advanced salmonids respectively. This interpretation supports the current hypothesis of phylogenetic relationships of salmonids. © 1992 Wiley-Liss, Inc.
    Zusätzliches Material: 28 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 177 (1983), S. 213-229 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The different elements of the caudal skeleton of the South American catfish genera Nematogenys (Nematogenyinae) and Trichomycterus, Hatcheria, and Bullockia (Pygidiinae) (Siluriformes, Trichomycteridae) show Ontogenetic transformation of the second ural centrum in Trichomycteridae separates the subfamilies Nematogenyinae and Pygidiinae. In the former, the second ural centrum is aligned with the first ural centrum in early stages of ontogeny; it is not fused with the bases of hypurals 3 and 4 in any stage of development. In the Pygidiinae, in contrast, the second ural centrum is connected with the base of hypural 3 from an early stage of development on. One of the most noteworthy features of the Pygidiinae is the epural, a polymorphic element with three or four morphotypes that are species specific.The primitive catfish Nematogenys shows intraspecific variation in the ural centra, segmentation of procurrent caudal rays, and principal caudal ray formulae. Species of Trichomycterus, Hatcheria, and Bullockia are characterized by great intraspecific variability that involves ural centra, the epural, hypurapophyses, and the neural arches of the compound centrum. There is intraspecific variation in the fusion of the hypurals in some species of Trichomycterus.Intraspecific variation of the caudal skeleton of fishes of the family Trichomycteridae involves the presence and frequency of different morphotypes of the epural, neural arch of the compound centrum, fusion of hypurals, and principal caudal ray formulae. Ontogenetic changes of the first and second ural centra, hypurapophyses (with the exception of Nematogenys), and segmentation of procurrent caudal rays (in Nematogenys) are involved also.
    Zusätzliches Material: 10 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 190 (1986), S. 215-241 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The centra of Lepisosteus are perichondral ossifications of arcualia (i.e., arcocentra), whereas those of Amia are direct perichordal ossifications (i.e., autocentra) that enclose the arcualia. The preural centra of Lepisosteus are monospondylous, whereas the ural centra are formations of inter- and basidorsal arcualia. In contrast, the preural centra of Amia are diplospondylous, whereas preural centrum 1 (and sometimes preural centrum 2) and ural centra are monospondylous. The ural centra of Lepisosteus are expansions of dorsal arcualia, but those of Amia are expansions of the basiventral autocentrum. This explains the fusion of the neural arches with the ural centra and the presence of autogenous hypurals in Lepisosteus, in contrast to the situation in Amia in which the compound ural neural arch (the fused ural neural arches) is free, and the hypurals are fused to the ural centra. Lepisosteus possesses true epurals, which are modified neural spines, whereas in Amia the “epurals” are positioned between the neural spines like radials. Lepisosteus and Amia possess a polyural caudal skeleton with a one-to-one relationship between ural centra and hypurals; the number of hypurals may be reduced in adult Lepisosteus.
    Zusätzliches Material: 19 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 217 (1993), S. 1-36 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The morphology of the upper, lower, and pharyngeal jaws is very similar among American cichlids. Common conditions are: (1) the presence of a premaxillary dentigerous arm shorter than the ascending arm (exceptions are Astronotus, Cichla, and Crenicichla semifasciata), (2) a narrow coulter area; in contrast, a broad coulter area is found in the Crenicichline Group, in certain chaetobranchines, and in Apistogramma, (3) the mandibular sensory canal exists to the skin through five or six simple pores; in contrast, it exits through numerous small pores that increase in number during ontogeny in the Chaetobranchine Group, certain crenicichlines, such as Cichla, Crenicichla lepidota, Crenicichla proteus, and Crenicichla vittata, and certain genera of the Cichlasomine Group A, such as Caquetaia, Petenia, Neetroplus, and “Cichlasoma,” and (4) the premaxilla and dentary of American cichlids commonly bear unicuspid, conical teeth with a few exceptions such as Neetroplus (with scraping blade teeth) and “Cichlasoma” facetum, “C.” cyanoguttatum, “C.” guttulatum, and “C.” spilurum (with bicuspid [hooked] teeth). In contrast to the near uniformity of the upper and lower jaws, the upper and lower pharyngeal jaws present a great diversity of tooth shapes. At least seven types are found in American cichlids; usually, several types exist on a single tooth plate, but the combination of tooth types differs among some genera.The pharyngobranchial 4 tooth plate has significant evolutionary transformations in labroids. The caudal margin of the pharyngobranchial 4 tooth plate bears the frayed zone in cichlids and embiotocids. The presence of a broad frayed zone bearing one to seven concavities represents a synapomorphy for the family Cichlidae, whereas a deep, narrow frayed zone is a synapomorphy of Embiotocidae. The absence of the frayed zone is a synapomorphy of Pomacentridae, whereas the loss of the pharyngobranchial 4 is a synapomorphy of Labridae. © 1993 Wiley-Liss, Inc.
    Zusätzliches Material: 20 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 222 (1994), S. 241-267 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The position and structure of the olfactory organ and its openings vary among actinopterygians. The anterior nasal opening is a simple perforation in the skin in many extant actinopterygians (e.g., acipenseriforms, lepisosteids, and primitive Recent teleosts) and represents the primitive condition. Polypterids and Amia each exhibit a derived condition, in which the anterior nasal opening extends into a tube. The olfactory organ is relatively far away from the anterior end of the elongate rostrum in acipenseriforms, whereas the olfactory organs are closer to the anterior end of the snout in extant actinopterygians (e.g., polypterids, lepisosteids, and amiids). In adults, olfactory organs are cuplike structures in most actinopterygians, but these organs are tubelike in polypterids. Among extant actinopterygians, a nasal diverticulum is present only in polypterids. Teleosts have accessory nasal sacs, but chondrosteans, polypterids, lepisosteids, and amiids lack them.The olfactory rosette is formed by primary folds or lamellae that may be placed anterior, lateral, posterior, and/or medial to the axis of the organ. Large acipenserids have 20-32 lamellae, polyodontids have 13-18 lamellae, lepisosteids have 8-10 lamellae, and Amia may have over 100. In teleosts, the number of lamellae varies from none or a few to over 200. Secondary lamellae are present in acipenseriforms, lepisosteids, and some advanced teleosts; secondary lamellae are interpreted as independently acquired in these lineages. Secondary lamellae are absent in Amia and primitive teleosts such as Elops and Hiodon. Tertiary lamellae are present in Acipenser oxyrhynchus. The arrangement of the primary lamellae in relation to the axis of the organ results in at least 11 patterns of the olfactory rosette in actinopterygians. Lamellae that are enclosed in a tubelike sac and that have an anteromedial diverticulum are specializations of polypterids. Primary lamellae anterior, lateral, and posterior to an elongate axis are characteristic of lepisosteids. The presence of primary lamellae lateral, medial, and posterior to an elongate olfactory axis is a synapomorphy of Halecomorpha (Amia plus teleosts). The absence of secondary lamellae is a synapomorphy of Halecomorpha. © 1994 Wiley-Liss, Inc.
    Zusätzliches Material: 15 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 203 (1990), S. 247-282 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The formation of the unpaired structure ventral to the basibranchial region, the so-called urohyal, differs within osteichthyans. A cartilaginous preformed, unpaired “urohyal” is present in sarcopterygians. A three-tendon ossification is present in Polypterus. An “urohyal” or urohyal is absent in both Amia and Lepisosteus. The urohyal formed as an unpaired ossification of the tendon of the sternohyoideus muscle is a feature of teleosts. A new structure, the parurohyal, arises as a double ossification of the tendon of the sternohyoideus muscle in siluroids; during ontogeny an anterodorsal crest or cup-like structure derives from the anterior basibranchial region and the tendon bone; therefore, the parurohyal is compound in origin. Judging from their formation and their distribution within osteichthyans the cartilaginous preformed “urohyal” and the teleostean urohyal are nonhomologous, whereas the urohyal and parurohyal are homologous. The urohyal is connected by ligaments with the ventral hypohyals in most teleosts, whereas it articulates with the ventral hypohyals in teleosts such as Anguilla and Chanos. The parurohyal is a synapomorphy of siluroids. The parurohyal in siluroids is articulated with both ventral and dorsal hypohyals, and with the basibranchial region in catfishes such as diplomystids and ictalurids, whereas it articulates only with the ventral hypohyals in other catfishes such as trichomycterines. The passage of the hypobranchial artery through the hypobranchial foramen of the parurohyal is a unique feature of siluroids, like the absence of the basihyal bone.An ossified dorsal hypohyal appears late in ontogeny in Amia, as do tooth plates related to the medial side of the hyoid arch and branchiostegal rays in Amia, and tooth plates on the hyoid arch and branchiostegal rays in Elops (unique features within extant teleosts). Two ossified hypohyals, a synapomorphy of teleosts, are present early in ontogeny.There is intraspecific variation in the onset of ossification of the bones of the head, but the sequence of ossification between bones in a defined structural system is conserved (e.g., branchiostegal rays ossify first, then bones of the hyoid arch).
    Zusätzliches Material: 20 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 208 (1991), S. 1-81 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The palatoquadrate and associated dermal bones have significant evolutionary transformations among teleostomes and provide numerous features that characterize teleostomian subgroups. The palatoquadrate forms the upper part of the mandibular arch and is present as a single cartilaginous element in the early ontogeny of teleostomes, except for some advanced teleosts such as siluroids where it is divided into pars autopalatina and pars pterygoquadrata. During ontogeny, the palatoquadrate may ossify as a unit, with a pars autopalatina (absent in Acanthodii), pars quadrata, and pars metapterygoidea in teleostomes (e.g., primitive acanthodians and actinopterygians, onychodonts, and rhipidistians). However, the palatoquadrate may remain cartilaginous (e.g., chondrosteans) or it may ossify as separate elements (e.g., autopalatine, metapterygoid, and quadrate) as occurs in advanced acanthodians, Polypterus and advanced actinopterygians, and advanced actinistians. From the single-unit pattern, separate autopalatine, metapterygoid, and quadrate evolve in parallel in the three teleostomian subgroups. Therefore, it is necessary to distinguish between actinopterygian and actinistian autopalatines and among acanthodian, actinopterygian, and actinistian metapterygoids and quadrates. A palatoquadrate fused with the neurocranium occurs in parallel in dipnoans.There are differences in the timing of ossification of the autopalatine, metapterygoid, and quadrate. The autopalatine ossifies late in ontogeny in Polypterus, Amia, and primitive teleosts (absent in lepisosteids and osteoglossmorphs), whereas both metapterygoid and quadrate ossify early in ontogeny. The early ossification of the autopalatine is characteristic of clupeocephalan teleosts. During ontogeny, tooth plates (not forming a separate dermometapterygoid) fuse with the metapterygoid in actinopterygians.Pars autopalatina, pars metapterygoidea, and pars quadrata are regions at the three corners of the single-unit palatoquadrate present in primitive teleostomes; there are no clear limits among these regions, but they may be identified by their processes, articular facets, and topographical relationships with surrounding bones and the orbit. Autopalatine, metapterygoid, and quadrate are chondral bones, perichondrally ossified. Dermal elements such as dermopalatine(s), entopterygoid, ectopterygoid, and tooth plates may cover the palatoquadrate medially. The predermopalatine that originates in front of pars autopalatina in Cladistia and the “dermopalatine” that lies medial to the ectopterygoid in Ginglymodi are specializations of these groups. A dermopalatine fused with the autopalatine is characteristic of clupeocephalan teleosts. Highly specialized tendon bone pterygoids are found in some teleosts (e.g., siluroids). The presence of both maxilla and lacrimal lateral to the pars autopalatina is synapomorphous of osteichthyans. The eye supported by the bony palatoquadrate is a teleostomian synapomorphy. Dermal elements support the eye in actinopterygians, the entopterygoid in advanced actinopterygians, but the ectopterygoid in lepisosteids.A quadratojugal is a synapomorphy of osteichthyans but exhibits a number of transformations in connection with the vertical pit-line and the preopercular canal; a quadratojugal bearing the vertical pit-line is the primitive condition for osteichthyans. Ontogenetic evidence does not support the homology of the membranous posterior process of the teleostean quadrate with the quadratojugal. The lack of a quadratojugal and the presence of the elongate posterior or posteroventral process of the quadrate is a synapomorphy of teleosts.
    Zusätzliches Material: 45 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...