Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 20 (1995), S. 223-234 
    ISSN: 1573-1634
    Keywords: Porous medium ; convection ; boundary layer ; nonsimilarity ; inertia ; surface waves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract We examine the combined effect of spatially stationary surface waves and the presence of fluid inertia on the free convection induced by a vertical heated surface embedded in a fluid-saturated porous medium. We consider the boundary-layer regime where the Darcy-Rayleigh number, Ra, is very large, and assume that the surface waves have O(1) amplitude and wavelength. The resulting boundary-layer equations are found to be nonsimilar only when the surface is nonuniform and inertia effects are present; self-similarity results when either or both effects are absent. Detailed results for the local and global rates of heat transfer are presented for a range of values of the inertia parameter and the surface wave amplitude.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 18 (1995), S. 1-13 
    ISSN: 1573-1634
    Keywords: Mixed convection ; thermal plume ; line source ; porous media
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A boundary-layer analysis is presented for the mixed convection flow which is produced when a horizontal line heat source, which is embedded in an infinite fluid-saturated porous medium, generates heat at a constant rate. It is shown that the governing equations can be non-dimensionalized so that they do not involve any parameters and thus just one solution of the transformed boundary-layer equations is required. Series solutions which are valid both near the line source and far downstream are obtained and compared with the numerical solution of the full boundary-layer equations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...