Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-0768
    Keywords: Key words Iodopentacarbonyl chromium(0) [Cr(CO)5I] ; Electrochemical quartz crystal microbalance (ECQCM) ; Ion transfer ; Voltammetry ; Mechanically attached solid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The electrochemistry of microcrystals of [(C4H9)4N][Cr(CO)5I] attached to a gold electrode which is placed in aqueous (lithium or tetrabutylammonium perchlorate) electrolyte media has been studied in detail by chronoamperometric, voltammetric and electrochemical quartz crystal microbalance (ECQCM) techniques. Whilst chronoamperometric and voltammetric measurements show that the expected one-electron oxidation of microcrystalline [Cr(CO)5I]− solid to Cr(CO)5I occurs at the solid-electrode-solvent (electrolyte) interface, the ECQCM measurements reveal that charge neutralization does not occur exclusively via the expected ejection of the tetrabutylammonium cation. Rather, uptake of ClO4 − occurs under conditions where the solubility of sparingly soluble [(C4H9)4N]ClO4 is exceeded. This is the first time that uptake of an anion rather than loss of a cation has been detected in association with an oxidation during electrochemical studies of microcrystals attached to electrode surfaces. It is therefore now emerging that analogous charge neutralization processes to those encounted in voltammetric studies on conducting polymers are available in voltammetric studies of microcrystals attached to electrodes which are placed in contact with solvent (electrolyte) media. In the presence of LiClO4 as the electrolyte, an ion exchange process occurs leading to formation of Li[Cr(CO)5I] . X H2O which then slowly dissolves in water at a rate that is strongly influenced by the electrolyte concentration, the relatively hydrophobic nature of the [(C4H9)4N]+ cation and the poor solubility of [(C4H9)4N]ClO4.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1433-0768
    Keywords: Key words Voltammetry ; Microparticles ; Modelling ; Three phase junction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The electrochemical reduction of a solid compound characterized by mixed ionic/electronic conductivity, immobilized on an electrode surface and in contact with an electrolyte solution, has been studied theoretically. The uptake or expulsion of electrons and electrolyte cation is coupled to maintain electroneutrality and is assumed to obey Fick's law of diffusion. Starting with the fully oxidized species, the simultaneous uptake of cations and electrons will be possible at the three-phase junction only, where electrode, solid and electrolyte solution meet. From this point, electrons and cations diffuse perpendicularly into the crystal lattice. The reaction zone grows owing to the formation of the electronically and ionically conducting reduced product. Two- and three-dimensional models have been utilized to simulate the diffusion and the current flow in response to an applied potential step. The resulting chronoamperometric curves have been analyzed with the help of fitting procedures. Under certain conditions, a transition of the three-phase reaction to a pure two-phase reaction occurs. This transition to a two-phase condition is the reason that a number of equations for the exhaustive conversion are similar to those known for planar diffusion, for example. To illustrate this, and for a better understanding of the phenomena, concentration profiles are presented for different degrees of the reaction and for varied simulation conditions. It is demonstrated how geometrical properties like crystal shape (cuboid with x ≠ y ≠ z) and crystal size as well as physical properties, e.g. the diffusion coefficients, govern the electrochemical behavior of mixed ionic/electronic conductors and form the basis of the current-time functions. The numerical simulation of a two-dimensional semi-infinite model of the reaction at the three-phase junction gives results comparable to an algebraical approach. The finite-difference method turned out to be suitable to solve the problems arising from the three-dimensional and finite diffusion conditions and from different crystal shapes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...