Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • QTL  (3)
  • nitrate reductase  (3)
  • Molecular mapping  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 23 (1984), S. 229-232 
    ISSN: 0031-9422
    Keywords: Gramineae ; Hordeum vulgare ; barley ; mutants. ; nitrate reductase ; peptide mapping ; stability
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Phytochemistry 25 (1986), S. 1275-1279 
    ISSN: 0031-9422
    Keywords: Gramineae ; Hordeum vulgare ; NAD(P)H nitrate reductase. ; barley ; kinetics ; nitrate reductase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 36 (1984), S. 13-18 
    ISSN: 0304-4211
    Keywords: Hordeum vulgare ; antiserum ; inactivation ; nitrate reductase ; rocket immunoelectrophoresis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 101 (2000), S. 203-210 
    ISSN: 1432-2242
    Keywords: Key words Brittle rachis ; Weak rachis ; QTL ; Spike density ; Peduncle curvature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Head shattering in barley (Hordeum vulgare L.) has two forms; brittle rachis and weak rachis. Brittle rachis is not observed in cultivated barley since all cultivars carry non-brittle alleles at one of the two complementary brittle rachis loci (Btr1;Btr2). Weak rachis causes head shattering in barley cultivars and may be confused with brittle rachis. Brittle rachis has been mapped to the chromosome 3 (3H) short arm while map position(s) of the weak rachis is unknown. Two major and a putative minor QTL for head shattering were mapped using the Steptoe × Morex doubled haploid line population. The largest QTL, designated Hst-3, located on the chromosome 3 (3H) centromeric region, is associated with a major yield QTL. The Steptoe Hst-3 region, when transferred into Morex, resulted in a substantial decrease in head shattering. High-resolution mapping of Hst-3 was achieved using isogenic lines. Brittle rachis was mapped with molecular markers and shown to be located in a different position from that of Hst-3. The second major QTL, designated Hst-2 S, is located on chromosome 2 S. This locus is associated with an environmentally sensitive yield QTL.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Barley ; Genome mapping ; Stripe rust ; Leaf rust ; BYDV ; Resistance Gene Analog Polymorphism ; QTL
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Stripe rust, leaf rust, and Barley Yellow Dwarf Virus (BYDV) are important diseases of barley (Hordeum vulgare L). Using 94 doubled-haploid lines (DH) from the cross of Shyri x Galena, multiple disease phenotype datasets, and a 99-marker linkage map, we determined the number, genome location, and effects of genes conferring resistance to these diseases. We also mapped Resistance Gene Analog Polymorphism (RGAP) loci, based on degenerate motifs of cloned disease resistance genes, in the same population. Leaf rust resistance was determined by a single gene on chromosome 1 (7H). QTLs on chromosomes 2 (2H), 3 (3H), 5 (1H), and 6 (6H) were the principal determinants of resistance to stripe rust. Two- locus QTL interactions were significant determinants of resistance to this disease. Resistance to the MAV and PAV serotypes of BYDV was determined by coincident QTLs on chromosomes 1 (7H), 4 (4H), and 5 (1H). QTL interactions were not significant for BYDV resistance. The associations of molecular markers with qualitative and quantitative disease resistance loci will be a useful information for marker-assisted selection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words  Hordeum vulgare ; Quantitative trait loci ; Molecular mapping ; Disease resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (`Steptoe'/`Morex') was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Quantitative trait loci ; Molecular mapping ; Disease resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Net blotch (caused by Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) are important foliar diseases of barley in the midwestern region of the USA. To determine the number and chromosomal location of Mendelian and quantitative trait loci (QTL) controlling resistance to these diseases, a doubled haploid population (‘Steptoe’/‘Morex’) was evaluated to the pathogens at the seedling stage in the greenhouse and at the adult plant stage in the field. Alleles at two or three unlinked loci were found to confer resistance to the net blotch pathogen at the seedling stage depending on how progeny exhibiting an intermediate infection response were classified. This result was corroborated in the quantitative analysis of the raw infection response data as 2 major QTL were identified on chromosomes 4 and 6M. A third QTL was also identified on chromosome 6P. Seven QTL were identified for net blotch resistance at the adult plant stage and mapped to chromosomes 1P, 2P, 3P, 3M, 4, 6P, and 7P. The 7 QTL collectively accounted for 67.6% of the phenotypic variance under a multiple QTL model. Resistance to the spot blotch pathogen was conferred by a single gene at the seedling stage. This gene was mapped to the distal region of chromosome 1P on the basis of both qualitative and quantitative data analyses. Two QTL were identified for spot blotch resistance at the adult plant stage: the largest QTL effect mapped to chromosome 5P and the other mapped to chromosome 1P near the seedling resistance locus. Together, the 2 QTL explained 70.1% of the phenotypic variance under a multiple QTL model. On the basis of the chromosomal locations of resistance alleles detected in this study, it should be feasible to combine high levels of resistance to both P. teres f. teres and C. sativus in barley cultivars.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: QTL ; RFLP mapping ; marker-assisted selection ; Barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Quantitative trait locus (QTL) and QTL x environment (E) interaction effects for agronomic and malting quality traits were measured using a 123-point linkage map and multi-environment phenotype data from an F1-derived doubled haploid population of barley (Hordeum vulgare). The QTL × E interactions were due to differences in magnitude of QTL effects. Highly significant QTL effects were found for all traits at multiple sites in the genome. Yield QTL peaks and support intervals often coincided with plant height and lodging QTL peaks and support intervals. QTL were detected in the vicinity of a previously mapped Mendelian maturity locus and known function probes forα- andβ-amylase genes. The average map density (9.6 cM) should be adequate for molecular marker-assisted selection, particularly since there were few cases of alternative favorable alleles for different traits mapping to the same or adjacent intervals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...