Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 63 (1982), S. 367-371 
    ISSN: 1432-2242
    Keywords: Storage proteins ; Hordein D ; Three point test ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The hordein storage proteins of barley (Hordeum vulgare L.) are of intense interest due to their genetic diversity and prominence and impact on the industrial and agricultural uses of the seed. Two major hordein loci have been previously mapped on chromosome 5 (Hor-1 and Hor-2 encoding the C and B hordeins, respectively). A third major locus, Hor-3, which codes for D hordein, has been located in the centromeric region of chromosome 5, probably on the long arm. Two allelic variants with apparent molecular weights of 83,000 and 91,000 and similar isoelectric points of 8.0 comprise the products of this locus in the barley varieties ‘Advance’ and ‘Triple Awned Lemma’. The D hordein examined is similar in molecular weight and isoelectric point to the high molecular weight (HMW) glutenin proteins encoded by the 1B chromosome of wheat (Triticum aestivum L.)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2242
    Keywords: QTL ; RFLP mapping ; marker-assisted selection ; Barley
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Quantitative trait locus (QTL) and QTL x environment (E) interaction effects for agronomic and malting quality traits were measured using a 123-point linkage map and multi-environment phenotype data from an F1-derived doubled haploid population of barley (Hordeum vulgare). The QTL × E interactions were due to differences in magnitude of QTL effects. Highly significant QTL effects were found for all traits at multiple sites in the genome. Yield QTL peaks and support intervals often coincided with plant height and lodging QTL peaks and support intervals. QTL were detected in the vicinity of a previously mapped Mendelian maturity locus and known function probes forα- andβ-amylase genes. The average map density (9.6 cM) should be adequate for molecular marker-assisted selection, particularly since there were few cases of alternative favorable alleles for different traits mapping to the same or adjacent intervals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 87-91 
    ISSN: 1432-2242
    Keywords: Key words Hordeum vulgare  ;  Dormancy  ; Quantitative trait loci  ;  Molecular marker-assisted selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Seed dormancy is a relatively complex trait in barley (Hordeum vulgare L.). Several dormancy loci were identified previously by quantitative trait locus analysis. Three reciprocal crosses were made in the present study between parents carrying specific dormancy alleles via linked molecular markers to verify individual dormancy locus effects and potential expression. Analyses of F2 progenies revealed that the dormancy allele at the locus flanked by the markers Ale and ABC302 on the long arm of chromosome 7 had a major effect on dormancy, and was at least partly epistatic to the dormancy locus in the ABC309–MWG851 interval near the telomere of the long arm of chromosome 7. In the absence of the dormancy allele in the Ale–ABC302 interval, the allele in the ABC309–MWG851 interval exerted moderate to large effects on dormancy. Cytoplasmic effects on dormancy were also observed. The germination percentages of progeny with relatively high levels of dormancy were more variable than those of non-dormant or less-dormant progeny, apparently due to environmental effects. Removal of the dormancy allele in the Ale–ABC302 interval, or introducing the dormancy allele in the ABC309–MWG851 interval, should suffice for adjusting dormancy levels in breeding programs to suit various production situations and end uses. The verification of dormancy loci via linked molecular markers allows manipulation of these loci in applied breeding programs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 92 (1996), S. 87-91 
    ISSN: 1432-2242
    Keywords: Hordeum vulgare ; Dormancy ; Quantitative trait loci ; Molecular marker-assisted selection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seed dormancy is a relatively complex trait in barley (Hordeum vulgare L.). Several dormancy loci were identified previously by quantitative trait locus analysis. Three reciprocal crosses were made in the present study between parents carrying specific dormancy alleles via linked molecular markers to verify individual dormancy locus effects and potential expression. Analyses of F2 progenies revealed that the dormancy allele at the locus flanked by the markers Ale and ABC302 on the long arm of chromosome 7 had a major effect on dormancy, and was at least partly epistatic to the dormancy locus in the ABC309-MWG851 interval near the telomere of the long arm of chromosome 7. In the absence of the dormancy allele in the Ale-ABC302 interval, the allele in the ABC309-MWG851 interval exerted moderate to large effects on dormancy. Cytoplasmic effects on dormancy were also observed. The germination percentages of progeny with relatively high levels of dormancy were more variable than those of non-dormant or less-dormant progeny, apparently due to environmental effects. Removal of the dormancy allele in the Ale-ABC302 interval, or introducing the dormancy allele in the ABC309-MWG851 interval, should suffice for adjusting dormancy levels in breeding programs to suit various production situations and end uses. The verification of dormancy loci via linked molecular markers allows manipulation of these loci in applied breeding programs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Barley ; Yield ; Marker-assisted selection ; QTL ; QTL×E
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We report results from a breeding strategy designed to accumulate favorable QTL alleles for grain yield identified in the SteptoeבMorex’ (SM) barley germplasm. Two map lines (SM73 and SM145) from the original mapping population were selected based on their marker genotype and QTL structure. When crossed, these lines would be expected to produce progeny with most favorable QTL alleles. One hundred doubled haploid (DH) lines from the F1 hybrid of this cross were genotyped with ten RFLP markers and one morphological marker defining grain yield to monitor QTL segregation. A subset of 24 lines representing various combinations of putatively favorable and unfavorable QTL alleles, together with Steptoe, ‘Morex’, SM73, and SM145, were phenotyped for grain yield in five environments. Multiple regression procedures were used to explore phenotype and genotype relationships. Most target QTLs showed significant effects. However, significance and magnitude of QTL effects and favorable QTL allele phase varied across environments. All target QTLs showed significant QTL-by-environment interaction (QTL×E), and the QTL on chromosome 2 expressed alternative favorable QTL alleles in different environments. Digenic epistatic effects were also detected between some QTL loci. For traits such as grain yield, marker-assisted selection efforts may be better targeted at determining optimum combinations of QTL alleles rather than pyramiding alleles detected in a reference mapping population.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 74 (1987), S. 402-408 
    ISSN: 1432-2242
    Keywords: Sodium azide ; Partial sterility ; Minor genes ; Hordeum vulgare L. ; Mutations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The partial sterility found in several advanced generation, sodium azide-induced lines of spring barley (Hordeum vulgare L.) was investigated. Plants of mutant lines were reciprocally crossed with plants of their untreated mother lines. Spike sterility was measured in the selfed offspring of the plants crossed and in F1 and F2 progeny. Pollen sterility and endosperm development were analyzed in the selfed offspring of the plants crossed. Results indicated that the sterility was inherited in the mutant lines and was not caused by translocations, inversions, endosperm lethals, embryo-endosperm lethals, or major gene mutations. Furthermore, the sterility was not cytoplasmically inherited, and was essentially eliminated in the F1 and F2 of crosses between partially sterile lines and their fertile parents. Results suggest that the sterility may be caused by an environmental interaction with deleterious, homozygous recessive, minor gene mutations that were in the heterozygous condition when the mutant lines were originally selected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2242
    Keywords: QTL mapping ; β-Glucan ; β-Glucanase Malt barley ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Genetic study of β-glucan content and β-glucanase activity has been facilitated by recent developments in quantitative trait loci (QTL) analysis. QTL for barley and malt β-glucan content and for green and finished malt β-glucanase activity were mapped using a 123-point molecular marker linkage map from the cross of Steptoe/Morex. Three QTL for barley β-glucan, 6 QTL for malt β-glucan, 3 QTL for β-glucanase in green malt and 5 QTL for β-glucanase in finished malt were detected by interval mapping procedures. The QTL with the largest effects on barley β-glucan, malt βglucan, green malt β-glucanase and finished malt βglucanase were identified on chromosomes 2,1,4 and 7, respectively. A genome map-based approach allows for dissection of relationships among barley and malt βglucan content, green and finished malt β-glucanase activity, and other malting quality parameters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Key words Fine mapping ; Additive effects ; Marker assisted backcrossing ; Isogenic lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Current techniques for quantitative trait locus (QTLs) analyses provide only approximate locations of QTLs on chromosomes. Further resolution of identified QTL regions is often required for detailed characterization. An important region containing malting-quality QTLs on barley (Hordeum vulgare L.) chromosome 1 was identified by previous QTL analyses in a Steptoe×Morex cross. This region contains two putative adjacent overlapping QTLs, each of which has effects on malt-extract percentage, α-amylase activity, diastatic power, and malt β-glucan content. All favorable alleles for these traits are attributed to Morex. The objective of the present study was fine structure mapping of this complex QTL region to elucidate whether these two putative overlapping QTLs are really one QTL. Another question was whether the apparently overlapping QTLs are due to the pleiotropic effects of a single gene, or the independent effects of several genes. A high-resolution map in the target region was developed which spans approximately 27 cM. Molecular-marker-assisted backcrossing was employed to create isogenic lines with a Steptoe background differing only in the region containing the QTLs of interest. A total of 32 different recombinants were identified, of which eight most-informative isogenic lines plus one reconstructed Steptoe control were selected for field testing. The additive effects on malt-extract percentage, α-amylase activity, diastatic power, and malt β-glucan content from eight isogenic lines were calculated based on malting data from three locations. By comparing the significant additive effects among isogenic lines carrying different Morex fragments, two QTLs each for malt extract and for α-amylase, and two to three for diastatic power were identified in certain environments and resolved into 1–8-cM genome fragments. There was a significant QTL×environment interaction for diastatic power, and there are indications that epistatic interactions for malt β-glucan content occur between the QTLs on chromosome 1 and QTLs on other chromosomes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 101 (2000), S. 203-210 
    ISSN: 1432-2242
    Keywords: Key words Brittle rachis ; Weak rachis ; QTL ; Spike density ; Peduncle curvature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Head shattering in barley (Hordeum vulgare L.) has two forms; brittle rachis and weak rachis. Brittle rachis is not observed in cultivated barley since all cultivars carry non-brittle alleles at one of the two complementary brittle rachis loci (Btr1;Btr2). Weak rachis causes head shattering in barley cultivars and may be confused with brittle rachis. Brittle rachis has been mapped to the chromosome 3 (3H) short arm while map position(s) of the weak rachis is unknown. Two major and a putative minor QTL for head shattering were mapped using the Steptoe × Morex doubled haploid line population. The largest QTL, designated Hst-3, located on the chromosome 3 (3H) centromeric region, is associated with a major yield QTL. The Steptoe Hst-3 region, when transferred into Morex, resulted in a substantial decrease in head shattering. High-resolution mapping of Hst-3 was achieved using isogenic lines. Brittle rachis was mapped with molecular markers and shown to be located in a different position from that of Hst-3. The second major QTL, designated Hst-2 S, is located on chromosome 2 S. This locus is associated with an environmentally sensitive yield QTL.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2242
    Keywords: Key words Hordeum vulgare ; Two-rowed ; Six-rowed ; Quality traits ; Quantitative trait loci
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Characterization of the determinants of economically important phenotypes showing complex inheritance should lead to the more effective use of genetic resources. This study was conducted to determine the number, genome location and effects of QTLs determining malting quality in the two North American barley quality standards. Using a doubled-haploid population of 140 lines from the cross of Harrington×Morex, malting quality phenotype data sets from eight environments, and a 107-marker linkage map, QTL analyses were performed using simple interval mapping and simplified composite interval mapping procedures. Seventeen QTLs were associated with seven grain and malting quality traits (percentage of plump kernels, test weight, grain protein percentage, soluble/total protein ratio, α-amylase activity, diastatic power and malt-extract percentage). QTLs for multiple traits were coincident. The loci controlling inflorescence type [vrs1 on chromosome 2(2H) and int-c on chromosome 4(4H)] were coincident with QTLs affecting all traits except malt-extract percentage. The largest effect QTLs, for the percentage of plump kernels, test weight protein percentage, S/T ratio and diastatic power, were coincident with the vrs1 locus. QTL analyses were conducted separately for each sub-population (six-rowed and two-rowed). Eleven new QTLs were detected in the subpopulations. There were significant interactions between the vrs1 and int-c loci for grain-protein percentage and S/T protein ratio. Results suggest that this mating of two different germplasm groups caused a disruption of the balance of traits. Information on the number, position and effects of QTLs determining components of malting quality may be useful for maintaining specific allele configurations that determine target quality profiles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...