Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 49 (1987), S. 1053-1081 
    ISSN: 1572-9613
    Keywords: Percolation ; phase separation ; Monte Carlo simulation ; lattice gas model ; finite-size scaling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The percolation transition of geometric clusters in the three-dimensional, simple cubic, nearest neighbor Ising lattice gas model is investigated in the temperature and concentration region inside the coexistence curve. We consider “quenching experiments,” where the system starts from an initially completely random configuration (corresponding to equilibrium at infinite temperature), letting the system evolve at the considered temperature according to the Kawasaki “spinexchange” dynamics. Analyzing the distributionn l(t) of clusters of sizel at timet, we find that after a time of the order of about 100 Monte Carlo steps per site a percolation transition occurs at a concentration distinctly lower than the percolation concentration of the initial random state. This dynamic percolation transition is analyzed with finite-size scaling methods. While at zero temperature, where the system settles down at a frozen-in cluster distribution and further phase separation stops, the critical exponents associated with this percolation transition are consistent with the universality class of random percolation, the critical behavior of the transient time-dependent percolation occurring at nonzero temperature possibly belongs to a different, new universality class.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9613
    Keywords: Percolation ; “physical clusters” ; Ising model ; Monte Carlo simulation ; finite-size scaling ; Fortuin-Kasteleyn representation ; Swendsen-Wang algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Finite squareL×L Ising lattices with ferromagnetic nearest neighbor interaction are simulated using the Swendsen-Wang cluster algorithm. Both thermal properties (internal energyU, specific heatC, magnetization 〈|M|〉, susceptibilityχ) and percolation cluster properties relating to the “physical clusters,” namely the Fortuin-Kasteleyn clusters (percolation probability 〈P ∞〉, percolation susceptibilityχ p, cluster size distributionn l) are evaluated, paying particular attention to finite-size effects. It is shown that thermal properties can be expressed entirely in terms of cluster properties, 〈P ∞〉 being identical to 〈|M|〉 in the thermodynamic limit, while finite-size corrections differ. In contrast,χ p differs fromχ even in the thermodynamic limit, since a fluctuation in the size of the percolating net contributes toχ, but not toχ p. NearT c the cluster size distribution has the scaling properties as hypothesized by earlier phenomenological theories. We also present a generalization of the Swendsen-Wang algorithm allowing one to cross over continuously to the Glauber dynamics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 36 (1984), S. 447-470 
    ISSN: 1572-9613
    Keywords: Classical nucleation theory ; droplet definitions ; lattice gas ; Monte Carlo ; spinodal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present Monte Carlo experiments on nucleation theory in the nearest-neighbor three-dimensional Ising model and in Ising models with long-range interactions. For the nearest-neighbor model, our results are compatible with the classical nucleation theory (CNT) for low temperatures, while for the long-range model a breakdown of the CNT was observed near the mean-field spinodal. A new droplet model and a zeroth-order theory of droplet growth are also presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...