Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: dl-α-Phenylhydracrylic acid ; Phenylacetic acid ; Flavobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A degradation pathway for dl-α-phenylhydracrylic, phenylacetic, 3- and 4-hydroxyphenylacetic acid by a Flavobacterium is presented. Experiments with washed cells and enzyme studies revealed that dl-α-phenylhydracrylic acid in an initial reaction was oxidatively decarboxylated to phenylacetaldehyde. Whole cells oxidized both stereoisomers of phenylhydracrylic acid at different rates. The product phenylacetaldehyde in turn was oxidized to phenylacetic acid. No hydroxylation of phenylacetic acid was detected in cell extracts, but on the basis of experiments with washed cells it is assumed that phenylacetic acid is mainly metabolized via 3-hydroxyphenylacetic acid. This latter product was subsequently hydroxylated yielding the ring-cleavage substrate homogentisate. 4-Hydroxyphenylacetic acid was also degraded via homogentisate. Ringcleavage of homogentisate gave maleylacetoacetate which was further degraded through a glutathione-dependent pathway. Homoprotocatechuate was not an intermediate in the metabolism of dl-phenylhydracrylic acid, phenylacetic, 3- and 4-hydroxyphenylacetic acid metabolism, but it could be hydroxylated aspecifically to 2,4,5-trihydroxyphenylacetic acid by the action of the 3-hydroxyphenylacetic acid-6-hydroxylase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 107 (1976), S. 235-240 
    ISSN: 1432-072X
    Keywords: Hydrogen bacteria ; Nitrogen fixation ; Acetylene reduction ; Mycobacterium flavum 301 ; Corynebacterium autotrophicum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seventeen strains of nitrogen-fixing bacteria, isolated from different habitats on hydrogen and carbon dioxide as well as on other substrates, morphologically resembled each other. All strains, including Mycobacterium flavum 301, grew autotrophically with hydrogen. The isolate strain 6 was sensitive to oxygen when dependent on N2 as nitrogen source, a consequence of the sensitivity of its nitrogenase towards oxygen. At the same time, strain 6 was sensitive to hydrogen when growing autotrophically on N2 as nitrogen source, but hydrogen did not affect acetylene reduction by these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 145 (1986), S. 403-407 
    ISSN: 1432-072X
    Keywords: Propene ; 1-Butene ; Xanthobacter ; Mono-oxygenase ; Nitrogen fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Yellow-pigmented bacteria showing typical characteristics of Xanthobacter spp. were isolated from enrichments with propene and 1-butene, using classical techniques. The generation time for growth on propene and 1-butene of these bacteria ranged from 5 to 7h. A NADH-dependent mono-oxygenase was identified in cell-free extract of Xanthobacter Py2. This mono-oxygenase was not influenced by potential inhibitors tested indicating that propene mono-oxygenase is different from other hydrocarbon mono-oxygenases described until now. Nitrogenase activity could be measured using the acetylene reduction assay with propene as energy source, because acetylene did not inhibit the mono-oxygenase activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...