Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 144 (1986), S. 169-174 
    ISSN: 1432-072X
    Keywords: Phenylglycine degradation ; Transamination of d- and l-phenylglycine ; Pseudomonas putida
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A strain of Pseudomonas putida capable of utilizing both stereoisomers of phenylglycine as the sole carbon and energy source was isolated from soil. No phenylglycine racemase was detected in cells grown on either stereoisomer. In an initial reaction each steroisomer of phenylglycine was transaminated yielding phenylglyoxylate which was further metabolized via benzaldehyde to benzoate. Subsequently, benzoate was further degraded via an ortho-cleavage of catechol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 150 (1988), S. 471-476 
    ISSN: 1432-072X
    Keywords: DL-4-Hydroxyphenylglycine ; Pseudomonas putida ; Transamination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Thirteen bacteria were isolated on D-4-hydroxyphenylglycine as sole carbon and energy source. Seven strains transaminated only the D-enantiomer while the other six isolates transaminated both enantiomers of 4-hydroxyphenylglycine. One of the six strains utilizing both enantiomers was characterized as a Pseudomonas putida. This strain, MW27, employed two enantioselective transaminases, to catalyze the initial step in the metabolism of DL-4-hydroxyphenylglycine. The product of the transamination, 4-hydroxyphenylglyoxylate, was further metabolized via 4-hydroxybenzaldehyde and 4-hydroxybenzoate to protocatechuate. Preliminary results indicate that both transaminases are co-ordinately synthesized together with the 4-hydroxyphenylglyoxylate decarboxylase and the NADP+-dependent 4-hydroxybenzaldehyde dehydrogenase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: dl-α-Phenylhydracrylic acid ; Phenylacetic acid ; Flavobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A degradation pathway for dl-α-phenylhydracrylic, phenylacetic, 3- and 4-hydroxyphenylacetic acid by a Flavobacterium is presented. Experiments with washed cells and enzyme studies revealed that dl-α-phenylhydracrylic acid in an initial reaction was oxidatively decarboxylated to phenylacetaldehyde. Whole cells oxidized both stereoisomers of phenylhydracrylic acid at different rates. The product phenylacetaldehyde in turn was oxidized to phenylacetic acid. No hydroxylation of phenylacetic acid was detected in cell extracts, but on the basis of experiments with washed cells it is assumed that phenylacetic acid is mainly metabolized via 3-hydroxyphenylacetic acid. This latter product was subsequently hydroxylated yielding the ring-cleavage substrate homogentisate. 4-Hydroxyphenylacetic acid was also degraded via homogentisate. Ringcleavage of homogentisate gave maleylacetoacetate which was further degraded through a glutathione-dependent pathway. Homoprotocatechuate was not an intermediate in the metabolism of dl-phenylhydracrylic acid, phenylacetic, 3- and 4-hydroxyphenylacetic acid metabolism, but it could be hydroxylated aspecifically to 2,4,5-trihydroxyphenylacetic acid by the action of the 3-hydroxyphenylacetic acid-6-hydroxylase.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 672 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Amino acids play an important role in biochemistry and chemistry. They are the building blocks of proteins and play an essential role in the regulation of the metabolism of living organisms.In general, it can be stated that microbial processes (fermentation) are the industrial production methods of choice for large-scale production of naturally occuring proteinogenic L-α-H-amino acids, while for the production of synthetic D- and/or L-α-H-amino acids, several other methods are highly competitive.At DSM, several routes, i.e., (chemoenzymatic) synthesis, towards L-α-H and D-α-H-amino acids have been elaborated since the midseventies.A general process for the synthesis of natural as well as synthetic optically pure amino acids has been developed, using an enzymatic kinetic resolution step on racemic amino acid amides as the key step. In this case, both enantiomers of the α-H-amino acids are prepared in one single step. This process has been commercialized since 1988.More recent developments using L- or D-amino peptidases in combination with amino acid amide racemases and an asymmetric transformation concept are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 590-594 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract  Pseudomonas pseudoalcaligenes can only form D-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on D-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the D-malate production activity, until the maximal malease activity was reached. Incubation of P. pseudoalcaligenes cells with Triton X-100 also resulted in an increase in the protein concentration of the supernatant, indicating that cell lysis had occurred. The rate at which the D-malate production activity increased was dependent on the Triton X-100 concentration and on the cell density. Also the rate at which lysis occurred depended on the Triton X-100 concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Of 125 microorganisms that were able to use α-hydroxy acid amides as sole nitrogen source, Ochrobactrum anthropi NCIMB 40321 was selected for its ability to hydrolyse racemic amides l-selectively. The substrate specificity of whole O. anthropi cells is remarkably wide and ranges from α-H-α-amino-, α-alkyl-α-amino, N-hydroxy-α-amino acid amides to α-hydroxy-acid amides. After 50% conversion, both the l-acids formed and the remaining d-amides were present in 〉99% enantiomeric excess, and ammonia accumulated in stoichiometric amounts. Using mandelic acid amide as a model substrate, the hydrolysis was optimized. Optimal rates were observed at pH 8.5 at 50°C. At higher temperatures the initial rate was even higher; however, fairly rapid inactivation occurred.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 43 (1995), S. 590-594 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Pseudomonas pseudoalcaligenes can only form d-malate from maleate after incubation of the cells with a solvent or a detergent. The effect of the detergent Triton X-100 on d-malate production was studied in more detail. The longer the cells were incubated with Triton X-100, the higher was the d-malate production activity, until the maximal malease activity was reached. Incubation of P. pseudoalcaligenes cells with Triton X-100 also resulted in an increase in the protein concentration of the supernatant, indicating that cell lysis had occurred. The rate at which the d-malate production activity increased was dependent on the Triton X-100 concentration and on the cell density. Also the rate at which lysis occurred depended on the Triton X-100 concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 25 (1986), S. 289-294 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Strain NTB-1, identified as a Alcaligenes denitrificans sp., was isolated from a mixture of soil and sewage samples using 4-chlorobenzoate as sole carbon and energy source. Simultaneous adaptation experiments and enzyme studies revealed that 4-chlorobenzoate was converted to 4-hydroxybenzoate which was further oxidized yielding 3,4-dihydroxybenzoate. Bioformation of 4-hydroxybenzoate from 4-chlorobenzoate when 4-chlorobenzoate-grown cells were incubated with 4-chlorobenzoate under conditions of low and controlled oxygen concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Favourable reaction conditions for the enzymatic production of 1-kestose by sucrose-1F-fructosyltransferase, SFT (EC 2.4.1.99) from Aspergillus phoenicis CBS 294.80 mycelium were established. The intracellular enzyme SFT works best at 60°C, exhibits a relatively high thermostability and possesses an alkaline pH optimum. An invertase also present in the mycelium of A. phoenicis possesses an acidic pH optimum. Consequently, around pH 8.0 sucrose is converted mainly to 1-kestose and nystose while fructose is only formed in relatively small amounts. Under optimal conditions (55° C, pH 8.0 and an initial sucrose concentration of 750 g 1-1) a yield of about 300 g 1-kestose per 1.01 reaction mixture could be achieved after 8 h.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...