Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nitrogen supply  (1)
  • Rooting pattern  (1)
  • 1
    ISSN: 1432-1939
    Keywords: Competition ; Allocation ; Canopy structure ; Rooting pattern ; Plasticity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In a 2-year experiment, the evergreen shrubsErica tetralix andCalluna vulgaris (dominant on nutrient-poor heathland soils) and the perennial deciduous grassMolinia caerulea (dominant on nutrient-rich heathland soils) were grown in replacement series in a factorial combination of four competition types (no competition, only aboveground competition, only belowground competition, full competition) and two levels of nutrient supply (no nutrients and 10 g N+2 g P+10 g K m−2 yr−1). Both in the unfertilized and in the fertilized treatmentsMolinia allocated about twice as much biomass to its root system than didErica andCalluna. In all three species the relative amount of biomass allocated to the roots was lower at high than at low nutrient supply. The relative decrease was larger forMolinia than forErica andCalluna. In the fertilized monocultures biomass of all three species exceeded that in the unfertilized series.Molinia showed the greatest biomass increase. In the unfertilized series no effects of interspecific competition on the biomass of each species were observed in either of the competition treatments. In the fertilized mixtures where only belowground competition was possibleMolinia increased its biomass at the expense of bothErica andCalluna. When only aboveground competition was possible no effects of interspecific competition on the biomass of the competing species were observed. However, in contrast with the evergreens,Molinia responded by positioning its leaf layers relatively higher in the canopy. The effects of full competition were similar to those of only belowground competition, so in the fertilized series belowground competition determined the outcome of competition. The high competitive ability ofMolinia at high nutrient supply can be attributed to the combination of (1) a high potential productivity, (2) a high percentage biomass allocation to the roots, (3) an extensive root system exploiting a large soil volume, and (4) plasticity in the spatial arrangement of leaf layers over its tall canopy. In the species under study the allocation patterns entailed no apparent trade-off between the abilities to compete for above- and belowground resources. This study suggests that this trade-off can be overcome by: (1) plasticity in the spatial arrangement of leaf layers and roots, and (2) compensatory phenotypic and species-specific differences in specific leaf area and specific root length.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Biomass allocation ; Nitrogen supply ; Phenotypic plasticity ; Photosynthesis ; Root distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of the present study was to investigate possible differences in plasticity between a potentially fast-growing and a potentially slow-growing grass species. To this end, Holcus lanatus (L.) and Deschampsia flexuosa (L.) Trin., associated with fertile and infertile habitats, respectively, were grown in sand at eight nitrate concentrations. When plants obtained a fresh weight of approximately 5 g, biomass allocation, specific leaf area, the rate of net photosynthesis, the organic nitrogen concentration of various plant parts and the root weight at different soil depths were determined. There were linear relationships between the morphological and physiological features studied and the In-transformed nitrate concentration supplied, except for the specific leaf area and root nitrogen concentration of H. lanatus, which did not respond to the nitrate concentration. The root biomass of H. lanatus was invariably distributed over the soil layers than that of D. flexuosa. However, D. flexuosa allocated more root biomass to lower soil depths with decreasing nitrate concentration, in contrast to H. lanatus, which did not respond. The relative response to nitrate supply, i.e. the value of a character at a certain nitrate level relative to the value of that character at the highest nitrate supply, was used as a measure for plasticity. For a number of parameters (leaf area ratio, root weight ratio, root nitrogen concentration, vertical root biomass distribution and rate of net photosynthesis per unit leaf weight) the potentially slow-growing D. flexuosa exhibited a higher phenotypic plasticity than the potentially fast-growing H. lanatus. These findings are in disagreement with current literature. Possible explanations for this discrepancy are discussed in terms of differences in experimental approach as well as fundamental differences in specific traits between fast- and slow-growing grasses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...