Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Biomass allocation ; Nitrogen supply ; Phenotypic plasticity ; Photosynthesis ; Root distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of the present study was to investigate possible differences in plasticity between a potentially fast-growing and a potentially slow-growing grass species. To this end, Holcus lanatus (L.) and Deschampsia flexuosa (L.) Trin., associated with fertile and infertile habitats, respectively, were grown in sand at eight nitrate concentrations. When plants obtained a fresh weight of approximately 5 g, biomass allocation, specific leaf area, the rate of net photosynthesis, the organic nitrogen concentration of various plant parts and the root weight at different soil depths were determined. There were linear relationships between the morphological and physiological features studied and the In-transformed nitrate concentration supplied, except for the specific leaf area and root nitrogen concentration of H. lanatus, which did not respond to the nitrate concentration. The root biomass of H. lanatus was invariably distributed over the soil layers than that of D. flexuosa. However, D. flexuosa allocated more root biomass to lower soil depths with decreasing nitrate concentration, in contrast to H. lanatus, which did not respond. The relative response to nitrate supply, i.e. the value of a character at a certain nitrate level relative to the value of that character at the highest nitrate supply, was used as a measure for plasticity. For a number of parameters (leaf area ratio, root weight ratio, root nitrogen concentration, vertical root biomass distribution and rate of net photosynthesis per unit leaf weight) the potentially slow-growing D. flexuosa exhibited a higher phenotypic plasticity than the potentially fast-growing H. lanatus. These findings are in disagreement with current literature. Possible explanations for this discrepancy are discussed in terms of differences in experimental approach as well as fundamental differences in specific traits between fast- and slow-growing grasses.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 214 (1999), S. 173-185 
    ISSN: 1573-5036
    Keywords: East Africa ; fire ; plant nutrient concentration ; savanna ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim of the present study was to investigate the causes of increased macronutrient concentrations in above-ground post-fire regrowth in an East African savanna (Northern Tanzania). Experiments were set up to discriminate between the following possible causes: (1) increased soil nutrient supply after fire, (2) relocation of nutrients from the roots to the new shoots, (3) rejuvenation and related changes in plant tissue composition and (4) changes in nutrient uptake in relation to above-ground carbon gains. N, P, K, Ca and Mg concentrations in post-burn graminoid vegetation were compared with clipped and with unburned, control vegetation during the post-burn growth season. One month after burning and clipping, nutrient concentrations in live grass shoots in the burned and clipped treatments were significantly higher than in the control. This effect, however, declined in the course of the season and, except for Ca, disappeared three months after onset of the treatments. There were no significant differences in live grass shoot nutrient concentrations between burned and clipped treatments which suggests that the increased nutrient concentration in post-fire regrowth is not due to increased soil nutrient supply via ash deposition. The relatively low input of nutrients through ash deposition, compared to the amount of nutrients released through mineralisation during the first month after burning and to the total nutrient pools, supports this suggestion. There was no difference between burned and unburned vegetation in total root biomass and root nutrient concentrations. Relocation of nutrients from the roots to the new shoots did not, therefore, appear to be a cause of higher post-fire shoot nutrient concentrations. The present study shows that in this relatively nutrient-rich savanna, the increased nutrient concentration in above-ground post-fire regrowth is primarily due to increased leaf:stem ratios, rejuvenation of plant material and the distribution of a similar amount of nutrients over less above-ground biomass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...