Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Northern hemisphere glaciation  (2)
  • principal component analysis  (1)
  • 1
    ISSN: 0146-6380
    Schlagwort(e): Quaternary ; alkanes ; alkenones ; chemometrics ; climate ; cyclicity ; dinosterol ; principal component analysis ; spectral analysis ; δ^1^8O foraminifera
    Quelle: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    International journal of earth sciences 85 (1996), S. 452-465 
    ISSN: 1437-3262
    Schlagwort(e): Paleoceanography ; North Pacific ; Ocean Drilling Project ; Northern hemisphere glaciation ; Pliocene ; Surface water productivity ; Sea surface temperatures ; Pacific moisture pump
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract Ocean Drilling Project (ODP) site 882 (50°22′N, 167°36′E) provides the first high-resolution GRAPE density, magnetic susceptibility, carbonate, opal and foraminifera (planktonic and benthic) stable isotopes records between 3.2 and 2.4 Ma in the Northwest Pacific. We observed a dramatic increase in ice rafting debris at site 882 at 2.75 Ma, which is coeval with that found in the Norwegian Sea, suggesting that the Eurasian Arctic and Northeast Asia were significantly glaciated from 2.75 Ma onwards. Prior to 2.75 Ma planktonic foraminifera δ18O records indicate a warming or freshening trend of 4°C or 2‰ over 80 ka. If this is interpreted as a warm pre-glacial Pliocene North Pacific, it may have provided the additional moisture required to initially build up the northern hemisphere continental ice sheet. The dramatic drop in sea surface temperatures (SST〉7.5°C) at 2.75 Ma ended this suggested period of enhanced SST and thus the proposed moisture pump. Moreover, at 2.79 and 2.73 Ma opal mass accumulation rates (MAR) decrease in two steps by five fold and is accompanied by a more gradual long-term decrease in CaCO3 MARs. Evidence from the Southern Ocean (ODP site 704) indicates that just prior to 2.6 Ma there is a massive increase in opal MARs, the opposite to what is found in the North Pacific. This indicates that the intensification of northern hemisphere glaciation was accompanied by a major reorganisation of global oceanic chemical budget, possibly caused by changes in deep ocean circulation. The initiation of northern hemisphere glaciation occurred in the late Miocene with a significant build up of ice on southern Greenland. However, the progressive intensification did not occur until 3.5–3 Ma when the Greenland ice sheet expanded to include northern Greenland. Following this stage we suggest that the Eurasian Arctic and Northeast Asia glaciated at 2.75 Ma, approximately 100 ka before the glaciation of Alaska (2.65 Ma) and 200 ka before the glaciation of the North East American continent (2.54 Ma).
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Geologische Rundschau 85 (1996), S. 452-465 
    ISSN: 0016-7835
    Schlagwort(e): Key words Paleoceanography ; North Pacific ; Ocean Drilling Project ; Northern hemisphere glaciation ; Pliocene ; Surface water productivity ; Sea surface temperatures ; Pacific moisture pump
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie
    Notizen: Abstract  Ocean Drilling Project (ODP) site 882 (50°22′N, 167°36′E) provides the first high-resolution GRAPE density, magnetic susceptibility, carbonate, opal and foraminifera (planktonic and benthic) stable isotopes records between 3.2 and 2.4 Ma in the Northwest Pacific. We observed a dramatic increase in ice rafting debris at site 882 at 2.75 Ma, which is coeval with that found in the Norwegian Sea, suggesting that the Eurasian Arctic and Northeast Asia were significantly glaciated from 2.75 Ma onwards. Prior to 2.75 Ma planktonic foraminifera δ18O records indicate a warming or freshening trend of 4  °C or 2‰ over 80 ka. If this is interpreted as a warm pre-glacial Pliocene North Pacific, it may have provided the additional moisture required to initially build up the northern hemisphere continental ice sheet. The dramatic drop in sea surface temperatures (SST〉7.5  °C) at 2.75 Ma ended this suggested period of enhanced SST and thus the proposed moisture pump. Moreover, at 2.79 and 2.73 Ma opal mass accumulation rates (MAR) decrease in two steps by five fold and is accompanied by a more gradual long-term decrease in CaCO3 MARs. Evidence from the Southern Ocean (ODP site 704) indicates that just prior to 2.6 Ma there is a massive increase in opal MARs, the opposite to what is found in the North Pacific. This indicates that the intensification of northern hemisphere glaciation was accompanied by a major reorganisation of global oceanic chemical budget, possibly caused by changes in deep ocean circulation. The initiation of northern hemisphere glaciation occurred in the late Miocene with a significant build up of ice on southern Greenland. However, the progressive intensification did not occur until 3.5–3 Ma when the Greenland ice sheet expanded to include northern Greenland. Following this stage we suggest that the Eurasian Arctic and Northeast Asia glaciated at 2.75 Ma, approximately 100 ka before the glaciation of Alaska (2.65 Ma) and 200 ka before the glaciation of the North East American continent (2.54 Ma).
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...