Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physical Chemistry  (2)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 357-374 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate, equilibrium, and thermodynamic data for reaction (1) of 2,6-diphenyl-4R-phenoxyl radicals, where R==OCH3 (I), Ph (II), OC2H5 (III), O-n-C18H37 (IV), and 2,6-dicyclohexyl-4-phenylphenoxyl radical (V), in various solvents are obtained. The k1 values of radicals I to V are within (5.5 ± 1.0) × 107-(1.4 ± 0.3) × 109M-1·sec-1 in propanol. The solvent effect on k1 for radicals I and II was studied. The dimerization of radical I is diffusion-controlled in all solvent studies. The dimerization of radical II is viscosity-dependent but not diffusion-controlled. Plots of k1 against ET have a V shape. Specific solvent-solute interactions are seeming to be responsible for numerical k1 values of radicals I and II. The solvent effect is more pronounced for “slow” dimerization of radicals II than for “fast” dimerization of radicals I. The minimum k1 values correspond to pyridine and chloroform. The reaction (1) rate strongly depends upon the composition of a chloroform (S)-cosolvent binary mixture. Besides reaction (1) the following reactions proceed in binary mixture: \documentclass{article}\pagestyle{empty}\begin{document}$$ K_{14} = 0.18 \pm 0.05M^{ - 1},k_{15} = (2.0 \pm 1.0) \times 10^8 M^{ - 1} \cdot \sec ^{ - 1} $$\end{document} (radical I, S-CCL4 mixture) \documentclass{article}\pagestyle{empty}\begin{document}$$ K_{14} = 0.9 \pm 0.2M^{ - 1},k_{15} = (1.2 \pm 0.5) \times 10^7 M^{ - 1} \cdot \sec ^{ - 1} $$\end{document}(radical II, S-C6H14 mixture) \documentclass{article}\pagestyle{empty}\begin{document}$$ K_{14} = 0.45 \pm 0.10M^{ - 1},k_{15} = (9.0 \pm 2.0) \times 10^6 M^{ - 1} \cdot \sec ^{ - 1} $$\end{document}(radical II, S-CCL4 mixture)In all cases k16 ≪ k15. Factors influencing dimerization rates in strongly nonideal mixtures CH3OH-CCL4 and CH3OH-CHCl3 are discussed.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 1481-1494 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rates and thermodynamic data have been obtained for the reversible self-termination reaction: \documentclass{article}\pagestyle{empty}\begin{document}$${\rm R}^ \cdot + {\rm R}^ \cdot \mathop{\buildrel\longleftarrow\over\longrightarrow}^{2k1}_{2k_{-1}}D $$\end{document} Involving aromatic 2-(4′dimethylaminophenyl)indandione-1,3-yl (I), 2-(4′diphenylaminophenyl)indandione-1,3-yl (II), and 2,6 di-tert-butyl-4-(β-phthalylvinyl)-phenoxyl (III) radicals in different solvents. The type of solvent does not tangibly affect the 2k1 of Radical(I), obviously due to a compensation effect. The log(2k1) versus solvent parameter ET(30) curves for the recombination of radicals (II) and (III) have been found to be V shaped, the minimum corresponding to chloroform. The intensive solvation of Radical (II) by chloroform converts the initially diffusion-controlled recombination of the radical into an activated reaction. The log (2k-1) of the dimer of Radical (I) has been found to be a linear function of the Kirkwood parameter (ε - 1)/(2ε + 1), the dissociation rate increasing with the dielectic constant of the solvent. The investigation revealed an isokinetic relationship for the decay of the dimer of Radical (I), an isokinetic temperature β = 408 K and isoequilibrium relationship for the reversible recombination of Radical (I) with β° = 651 K. For Radical (I) dimer decay In(2k-1) = const + 0.8 In K, where K is the equilibrium constant of this reversible reaction. The transition state of Radical (I) dimer dissociation reaction looks more like a pair of radicals than the initial dimer. The role of specific solvation in radical self-termination reactions is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...