Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (2)
  • Radiocarbon  (1)
  • 1
    ISSN: 1432-0975
    Keywords: Key words Sediment ; Carbonate ; Radiocarbon ; Hawaii ; Holocene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract The origin, age, and dynamics of carbonate sediments in Kailua Bay on Oahu, Hawaii, are described. The shoreface (from shoreline to 4 km offshore) consists of a broad (5 km2) fringing coral reef ecosystem bisected by a sinuous, shore-normal, sand-filled paleostream channel 200–300 m wide. The median grain diameter of surface sands is finest on the beach face (〈0.3 mm) and increases offshore along the channel axis. Kailua sands are 〉90% biogenic carbonate, dominated by skeletal fragments of coralline algae (e.g. Porolithon, up to 50%) followed by the calcareous green alga Halimeda (up to 32%), coral fragments (1–24%), mollusc fragments (6–21%), and benthic foraminifera (1–10%). Sand composition and age across the shoreface are correlated to carbonate production. Corals and coralline algae, principal builders of the reef framework, are younger and more abundant in sands along the channel axis and in offshore reefal areas, while Halimeda, molluscs, and foraminifera are younger and more dominant in nearshore waters shoreward of the main region of framework building. Shoreface sediments are relatively old. Of 20 calibrated radiocarbon dates on skeletal constituents of sand, only three are younger than 500 years b.p.; six are 500–1000 years b.p.; six are 1000–2000 years b.p.; and five are 2000–5000 years b.p. Dated fine sands are older than medium to coarse sands and hence may constitute a reservoir of fossil carbonate that is distributed over the entire shoreface. Dominance of fossiliferous sand indicates long storage times for carbonate grains, which tend to decrease in size with age, such that the entire period of relative sea-level inundation (∼5000 years) is represented in the sediment. Despite an apparently healthy modern coral ecosystem, the surficial sand pool of Kailua Bay is dominated by sand reflecting an antecedent system, possibly one that existed under a +1–2 m sea-level high stand during the mid- to late Holocene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 21 (1987), S. 955-964 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Elemental analysis of marginal seal material on 20 bulk samples of occlusally restored teeth have shown that, generally, more elements were detected in the seal material analyzed on the bulk restoration or fractured tooth surfaces than when such material was extracted using a nitrocellulose replica prior to analysis. No mercury was detected in any of the extracted seal material and only three of the replica specimens contained silver. This implies that the technique of using extraction replicas to remove material from the amalgam-tooth interface for subsequent x-ray microanalysis can provide an accurate elemental composition. The details of fabrication and the advantages of using high resolution nitrocellulose replicas for extracting marginal seal material from teeth for subsequent x-ray microanalysis are described.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 22 (1994), S. 532-537 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: Degradation of polymers by hyperthermal species (e.g. atomic oxygen (ATOX)) occurs in a variety of practical systems including external surfaces of spacecraft in low earth orbits (LEO), for which the impact with the residual atomic oxygen (impact energy 3-7 eV) results in significant erosion. In the present work the effects of hyperthermal species on two polymers commonly used for space applications (Kapton H and Teflon FEP) were investigated. The polymers were exposed to 30 eV O+ and Ne+ fluences of 1015-1019 ions cm-2. The phenomena investigated included total mass loss and changes of surface morphology (SEM and AFM) and surface chemical composition (XPS). The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of O+ and Ne+ bombardment. AFM analysis was found very powerful in studying the damage from its initial atomic scale (roughness of ∼ 1 nm) to its final macroscopic scale (roughness 〉 1 μm).
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...