Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 16 (1982), S. 785-798 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: It has been shown previously that supplementing plastic intrauterine devices (IUDs) with copper wire enhances the antifertility effect of the device. The use of copper intrauterine contraceptive devices, however, is currently limited to two to three years, mainly because of wire fragmentation, which was observed as early as after eight months of use. In the resulting search for a long-lasting device, two new systems of duplex wire, with gold and platinum cores electrolytically coated with copper, were devised and studied. Initially, duplex wires and controls were exposed to physiological solution. Copper dissolution rate and corrosion morphology were studied by weight-loss measurements and optical metallography. Similar systems were then surgically implanted in rat uteri for varying periods of up to 26 weeks. Electron micro-analysis of corrosion products, in addition to weight-loss measurements and metallography, was performed. The results showed that a uniform and ductile copper coating is obtainable by electroplating on gold and platinum wires. Rate of copper dissolution is similar to that of solid copper wire. No dissolution of gold and platinum in the controls or coated wires was detected by weight loss, metallography, or atomic absorption measurements. Microanalysis of the deposits and corrosion products on the wires in the uteri environment showed sulfur, chlorine, and calcium, in addition to copper. The results of this study suggest that supplementing IUDs with copper-coated gold or platinum wires may result in significant prolongation of the life span of the device by preventing uncontrolled loss of copper caused by wire fragmentation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 12 (1978), S. 1-12 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The rotating ring-disk electrode technique has been applied to the study of anodic dissolution of dental amalgam in a simulated saline solution.The electroactive domains of the silver, tin, and mercury couples (the main constituents of the amalgam) were determined from current-potential curves obtained at a rotating gold-disk electrode in solutions containing salts of the respective metals. Subsequently, anodic currents were applied to a rotating amalgam-disk electrode and the soluble products produced were identified using a concentric gold ring electrode, i.e., using the rotating gold-ring, amalgam-disk electrode. Species generated at the amalgam disk are transferred to the gold ring by convective diffusion. Tin ions were found to be the only soluble species generated at the amalgam disk. No evidence for dissolution of other components was found. The selective dissolution of tin from the amalgam is also consistant with potential shifts observed in repetitive current-potential curves of an amalgam disk.This study provides a direct proof for the selective dissolution of tin during corrosion of dental amalgam in an in vitro environment.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...