Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Documenta ophthalmologica 87 (1994), S. 291-313 
    ISSN: 1573-2622
    Keywords: Eye innervation ; Glaucoma ; Intraocular ; Pressure ; Pterygopalatine ganglion ; Sphenopalatine ganglion ; Superior cervical ganglion ; Trigeminal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The peripheral nervous system is classically separated into a somatic division containing both afferent and efferent pathways and an autonomic division composed of efferents only. The somatic afferent division is divided in A- and B-neurons. The B-neurons are supposed to be autonomic afferents as part of a reflex system involved in homeostasis. Recent data obtained by neuronal tracing and immunohistochemical experiments concerning the eye related peripheral nervous system endorse the existence of these peripheral reflex systems. Somatic afferents of trigeminal origin synaptically innervate parasympathetic neurons in the pterygopalatine ganglion. This probably represents a pathway mediating autonomically regulated ocular activity in response to sensory stimulation. In addition, it has been hypothesized that trigeminal sensory nerve fibres have an efferent function in response to noxious stimuli e.g. the ocular injury response. Sympathetic nerve fibres originating in the superior cervical ganglion course through the trigeminal and pterygopalatine ganglion without forming direct synaptic contacts. These fibres, however, contain clusters of vesicles suggesting some kind of interneural communication. Parasympathetic nerve fibres of pterygopalatine origin course through the ciliary ganglion. These nerve fibre terminals also contain clusters of vesicles without direct synaptic contacts. Experimental data concerning the distribution of neuropeptides revealed a more detailed knowledge of the anterior eye segment innervation. These experimental data are subject to some debate. The pros and cons of different techniques are discussed. Neural circuits regulating IOP have long been postulated. The possible role of peripheral reflex systems in the regulation of IOP is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...