Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Quercus petraea Liebl. M.  (1)
  • lime  (1)
  • 1
    ISSN: 1573-5036
    Keywords: cation exchange capacity ; gypsum ; lime ; Quercus petraea ; sessile oak
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a former 45 to 50 year old sessile oak ( Quercus petraea (M.) Liebl.) coppice mixed with birch (Betula pubescens Ehrh.) and rowan (Sorbus aucuparia L.) on a poor acidic forest soil at la Croix-Scaille in the French Ardennes, several liming amendments were applied in 1990 and 1994. Data on soil and soil solution composition, as well as stand growth and foliar composition were collected between 1994 and 1997. All treatments, containing 1.4 t ha-1 equivalent of CaO supplied as lime, gypsum or a mixture of the two, resulted in an increase of cation exchange capacity and base saturation down to 15 cm and for CaSO4 treatments down to 30 to 45 cm, increases of soil pH and Ca concentration at the surface and a decrease of Al concentration in the soil and soil solution in the surface layers. No negative effects like increased nitrate or cation leaching were observed. Although Mg nutrition was not improved by the treatments (not containing Mg), a relative and maintained gain of radial increment of sessile oak in the order of 40% for both lime and gypsum applied, was observed immediately from the first year on, after the application (1991).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: fine roots ; liming ; Quercus petraea Liebl. M. ; rhizosphere ; rhizotron ; shoot:root
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L 〉 G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L 〉 G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L 〉 G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L 〉 G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...