Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1106
    Keywords: Tuberomammillary nucleus ; Histaminergic system ; E groups ; Efferent projection ; Medial preoptic area ; Inferior colliculus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The efferent projections of the five histaminergic neuronal subgroups in the tuberomammillary nucleus to the medial preoptic area (MPO) and inferior colliculus (IC) were examined by immunocytochemistry with antihistidine decarboxylase (HDC) antibodies combined with retrograde axonal tracing with Fast Blue (FB). The term “E groups” were used for the histaminergic neuronal subgroups. About 10% of the HDC-immunoreactive (HDCI) neurons were retrogradely labeled after FB injection into the MPO. The labeled neurons were not concentrated in any particular area, but were diffusely distributed bilaterally in all the subgroups. About two-thirds of the labeled neurons were observed on the side ipsilateral to the injection site and one-third on the contralateral side. The percentages of labeled neurons (double-labeled neurons/HDCI neurons) in the five subgroups were not significantly different with each other. The percentages in group E1 and E2 were particularly close, while that in group E4 resembled that in group E5. About 4% of the HDCI neurons were retrogradely labeled after the dye injections into the IC, and about half of the labeled neurons were detected on the ipsilateral side. The percentage of the double-labeled neurons in the five groups were not significantly different. Furthermore, those in E1 and E2, and in E4 and E5 were almost identical, respectively, to the situation following injection of FB into the MPO. These results indicate that each subgroup of histaminergic neurons in the tuberomammillary nucleus has similar efferent projections to the MPO and IC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 119 (1998), S. 159-165 
    ISSN: 1432-1106
    Keywords: Key words Neuropeptide FF ; Spinothalamic neurons ; Lateral cervical nucleus ; Lateral spinal nucleus ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Neuropeptide FF (NPFF, F8Famide) is best known for its modulating effect on opioid analgesia and morphine tolerance. However, the exact mode of action of NPFF in sensory transmission is not known. We compared the distribution of NPFF-immunoreactive (ir) fibers and terminal-like thickenings with the retrograde, tracer-filled spinothalamic (ST) neurons in the lateral spinal nucleus (LSN) and lateral cervical nucleus (LCN) of rat, areas where NPFF-containing nerve terminals are abundant. We injected fluorescent latex microspheres into the ventroposterolateral thalamic nucleus and more medial thalamic nuclei, which are innervated by ST neurons. We found NPFF-ir terminal-like thickenings and fibers apposing the tracer-filled neurons in the LSN and LCN. ST neurons filled with the retrograde tracer making contacts with NPFF-ir terminal-like thickenings, were found to terminate not only in the ventroposterolateral thalamic nucleus but also in more medial thalamic nuclei. The highest number of tracer-filled ST neurons having NPFF-ir terminal-like thickenings and fibers in apposition were found at the cervical level. Our results suggest that NPFF-containing systems in the spinal cord of rat are not limited to the substantia gelatinosa, and the sensory functions of NPFF may be mediated at least partly through the modulation of the ST system. NPFF-ir contacts in the LSN and LCN might play an important role in the somatic sensory transmission system. This study shows evidence for the first time that the spinal NPFF-containing system may be involved in mechanisms that control sensory input to the supraspinal levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...