Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rhizobium  (3)
  • Rhizobium etli  (2)
  • Stanford and Smith  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Scientia Horticulturae 31 (1987), S. 1-9 
    ISSN: 0304-4238
    Keywords: Rhizobium ; mung bean ; nodulation ; persistence ; promiscuity ; tropical legumes ; winged bean
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Scientia Horticulturae 20 (1983), S. 231-240 
    ISSN: 0304-4238
    Keywords: Azospirillum ; N"2-fixation ; Rhizobium ; nodulation ; soybean ; winged bean
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Competitiveness ; Genetic exchange ; Rhizobium etli ; Rhizobium tropici IIB ; Saprophytic ; competence ; Symbiotic nitrogen fixation ; Nodule population
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Inoculation of beans (Phaseolus vulgaris L.) with strains of R. tropici IIB and R. etli resulted in the disappearance of the R. tropici IIB stains from the nodule population and their replacement by other (non R. tropici IIB) bean symbionts (Vlassak et al. 1996). Coinoculation studies in monoxenic conditions and in soil core microcosms with plants harvested at two different growth stages indicated that the inoculated R. tropici IIB strains CIAT899 and F98.5 possess a good intrinsic competitiveness which declines, however, at a later plant growth stage and in soil conditions. The poor saprophytic competence of R. tropici IIB strain CIAT899 was further demonstrated by its poor survival in soil core microcosms after bean harvest. Strains were isolated from the field plots with a 3-year bean-planting history, characterized and evaluated for their competitiveness against R. tropici IIB strain CIAT899. Isolates from field plots, which had been repeatedly inoculated with R. tropici IIB strain CIAT899, showed a higher nodule occupancy compared to R. tropici IIB strain CIAT899, and this higher competitiveness exhibited by the field isolates might be an additional reason for the poor performance of R. tropici IIB strain CIAT899 in the field study. Plots with and without a history of bean production revealed after 3-year bean cultivation an almost totally different population that also significantly differed in competitiveness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Competition ; Inoculation ; N2 fixation ; Phaseolus vulgaris ; Rhizobium etli ; Rhizobium tropici ; Nodule occupancy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Strains of Rhizobium tropici IIB, CIAT899 and F98.5, both showing good N2 fixation, and a R. etli strain W16.3SB were introduced into a field which had no history of bean culture. Plant dilution estimates showed that in the presence of its host (Phaseolus vulgaris cv. Carioca) during the cropping seasons and the subsequent fallow summer periods, the bean rhizobial populations increased from less than 30 to 103 g−1 dry soil after 1 year and to 104 g−1 dry soil after 2 years. In the 1st year crop, the inoculated strains occupied most of the nodules, which resulted in a higher nodulation and C2H2 reduction activity. Without reinoculation for the second and third crops, however, little R. tropici IIB was recovered from the nodules and the bean population consisted mainly of R. etli, R. leguminosarum bv. phaseoli, and R. tropici IIA. Reinoculation with our superior R. tropici IIB strains before the second crop resulted in R. tropici IIB occupying the main part of the nodules and a positive effect on nodulation and C2H2 reduction activity, but reintroduction of the inoculant strain in the third season did not have any effect.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1617-4623
    Keywords: Key words Transcriptional regulator ; AraC ; Rhizobium ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rhizobium sp. BR816 contains four nodD alleles of which nodD 3 is the most important transcriptional regulator for nodulation of Phaseolus vulgaris. Upstream of nodD 3 an open reading frame, orf816, was identified. The deduced ORF816 protein shows homology with transcriptional regulators of the AraC/XylS family. The DNA binding domain and the consensus motif, characteristic of the C-terminal region of the members of this family of transcriptional regulators, are present in the deduced ORF816 protein. Activation of nodA gene expression and nodulation of P. vulgaris by Rhizobium sp. NGR234nodD 1 :: Ω (Nod−) complemented with the Rhizobium sp. BR816 nodD 3 gene were significantly increased in the presence of orf816. This increased nodulation and nod gene induction are mediated through positive regulation of nodD 3 expression by ORF816. Expression of orf816 itself is partially RpoN dependent. The role of this transcriptional regulator in the complex cascade regulation of the Rhizobium sp. nodD 3 gene is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5036
    Keywords: aerobic incubation ; C and N mineralization ; crop residues ; soil organic matter pools ; Stanford and Smith
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fitting a double negative exponential function to N mineralization data can be used to characterize two organic nitrogen pools; an ‘easily’ decomposable (Ndpm) and a ‘resistant’ one (Nrpm). The relevance of those two calculated N mineralization pools was investigated by adding ‘easily’ decomposable organic material to soils. Soil amended with crop residues of sugar-beet or bean was mixed with an equal amount of coarse sand, incubated at 35 °C and leached at specific time-intervals. Upon leaching, NH4 + and NO3 - were measured in the extracts. A double negative exponential function was fitted to the data and two organic N pools were defined. Fitting a double negative exponential function to N mineralization data to characterize an active and resistant organic N pool was sometimes impossible; the N mineralization data did not always resemble a negative exponential function. Additionally, the size of the two pools calculated were not constant with time and were often meaningless; the Nrpm pool was greater than the soil organic N content, the size of the Nrpm pool was smaller than the Ndpm pool or one of the N pools was negative. Relevant values for both Nrpm and Ndpm which were consistent with incubation time were only obtained when excessive amounts of organic material, normally not dealt with in the field, were applied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 177 (1995), S. 175-181 
    ISSN: 1573-5036
    Keywords: aerobic incubation ; nitrogen mineralization potential ; Stanford and Smith
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil is often incubated under controlled conditions to assess its capacity to mineralize nitrogen and to define the N mineralization potential (No) by fitting a negative exponential curve to N mineralization data. The specificity of No for a given soil and its relevance in N mineralization studies was examined as part of an overall study of the N mineralization process. Soil mixed with an equal amount of sand was aerobically incubated at 35 °C and leached at specific time intervals. Upon leaching, ammonium and nitrate were measured in the extract. It was found that N mineralization data did not always follow first-order kinetics making it difficult to calculate No. The computed No value was influenced by the shape of the curve, the duration of the incubation experiment and was reciprocally related to the N mineralization constant (kexp). No did not always give an adequate indication of the amount of N mineralized and was not soil specific as the time of sampling largely affected its size. The usefulness of No in the simulation of the N mineralization process with a kexp value valid for all soils was limited and a kexp value specific for each soil was required. A value combining the soil specific No and kexp values and reflecting the amount of N mineralized over one year was proposed as a suitable alternative to the use of No in comparative studies of the N mineralization process. It was concluded that a calculated No could not be used in studies comparing the N mineralization of different soils. In addition, the simulation of the N mineralization required the use of the soil specific kexp and could not be carried out with a kexp valid for all soils.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...