Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 6 (1986), S. 389-405 
    ISSN: 0886-1544
    Keywords: cell membrane complex ; extracellular matrix ; fibronectin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Intermediate filaments (IF) were found in close proximity to the plasma membrane in substrate attached baby hamster kidney cells (BHK-21) and chick embryo fibroblasts (CEF) as well as cells removed from their substrate in the absence of trypsin. However, in cells removed with trypsin, it appeared that IF had retracted away from the membrane. In cells with abundant extracellular matrix (ECM), colchicine induced massive cables of IF, which appeared to interact with specialized areas of the inner plasma membrane. In cells lysed to extract most microfilaments and cytoplasmic constituents, the intact IF network which remained was closely associated with the ECM. From these ultrastructural observations it was concluded that IF interact in some way with a “cell membrane complex” defined as comprising the plasma membrane and molecules attached to its inner and outer surfaces.In order to investigate the possibility that components of the membrane complex may co-isolate with IF, native intermediate filaments (NIF) were prepared. In addition to the structural subunits and other associated polypeptides, a ∼220 kd species which reacted specifically with antibodies directed against the ECM protein fibronectin (FN) was observed; 220 kd was still present after NIF were isolated under pH conditions where FN is more soluble, suggesting that its presence was not simply due to the coprecipitation of two insoluble proteins. Immunofluorescence and immunogold localization confirmed that FN is a component of the cell membrane complex with which IF appeared to interact.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 3 (1983), S. 1-19 
    ISSN: 0886-1544
    Keywords: cytoplasmic transport ; Saltation ; microtubules ; keratocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: We report the first direct demonstration that the cytoplasmic transport of organelles and vesicles (collectively called particles) takes place along microtubules. Living keratocytes from the corneal stroma of the frog, Rana pipiens, were observed with Allen video-enhanced constrast, differential interference constrast (AVEC-DIC) microscopy [Allen et al, 1981]. In sufficiently thin regions of these cells a network of linear elements was visible. When particles were observed in motion, they always moved along these linear elements. The linear elements remained intact and in focus on the microscope when lysed in a cell lysis solution that stabilized microtubules. Preparations were then fixed in formaldehyde, washed with phosphate-buffered saline (PBS), incubated with rabbit antitubulin, washed with PBS, stained with rhodamine-conjugated goat antirabbit, and washed with PBS. The extracted cells continued to remain in place and in focus on the microscope throughout these procedures. The same cells were then observed using epifluorescence optics and a silicon-intensified target (SIT) video camera. A network of fluorescent linear elements was seen to correspond in number, form, and position to the linear elements seen in the live AVEC-DIC image. Taken together, the AVEC-DIC and fluorescence microscopy observations prove that the linear elements along which particles move are microtubules (MTLEs). The observed particle speeds, pause times, and distances moved varied widely, even for the same particle on the same microtubule. Particles were also observed to switch from one microtubule to another as they were transported. The polarity of the microtubules did not seem to affect the particle direction, since particles were observed to move in both directions on the same MTLE. When not in motion these particles behaved as if anchored to the microtubules since they showed negligible Brownian motion. Finally, it was observed that an elongate particle could move onto two intersecting linear elements such that it was deformed into an inverted “Y” shape. This indicates that there may be more than a single site of attachment between the force generator and the particle.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...