Bibliothek

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Plant molecular biology 31 (1996), S. 1073-1077 
    ISSN: 1573-5028
    Schlagwort(e): aspartic protease ; methyl jasmonate ; plant defense ; systemin ; tomato leaves
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract A full-length cDNA encoding an aspartic protease (LeAspP) has been cloned from a tomato leaf cDNA library. Using LeAspP cDNA as a probe in gel blots, LeAspP mRNA was shown to be systemically induced in tomato leaves by wounding. Application of methyl jasmonate to leaves of intact tomato plants, or supplying systemin to young tomato plants through their cut stems, induces synthesis of LeAspP mRNA. LeAspP message is regulated in tomato similar to several systemic wound response proteins (swrps) that are part of the defense response in tomato plants directed against herbivore attacks.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-2048
    Schlagwort(e): Key words: Aromatic amino acids ; Chorismate synthase ; Flavin reductase ; Shikimate pathway
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract. Chorismate synthase, the seventh enzyme in the shikimate pathway, catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate to chorismate which is the last common precursor in the biosynthesis of numerous aromatic compounds in bacteria, fungi and plants. The enzyme has an absolute requirement for reduced FMN as a cofactor, although the 1,4-anti elimination of phosphate and the C(6proR)-hydrogen does not involve a net redox change. The role of the reduced FMN in catalysis has long been elusive. However, recent detailed kinetic and bioorganic approaches have fundamentally advanced our understanding of the mechanism of action, suggesting an initial electron transfer from tightly bound reduced flavin to the substrate, a process which results in C—O bond cleavage. Studies on chorismate synthases from bacteria, fungi and plants revealed that in these organisms the reduced FMN cofactor is made available in different ways to chorismate synthase: chorismate synthases in fungi – in contrast to those in bacteria and plants – carry a second enzymatic activity which enables them to reduce FMN at the expense of NADPH. Yet, as shown by the analysis of the corresponding genes, all chorismate synthases are derived from a common ancestor. However, several issues revolving around the origin of reduced FMN, as well as the possible regulation of the enzyme activity by means of the availability of reduced FMN, remain poorly understood. This review summarizes recent developments in the biochemical and genetic arena and identifies future aims in this field.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...