Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 22 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Chorismate synthase (CS) catalyses the conversion of 5-enolpyruvylshikimate 3-phosphate (EPSP) to form chorismate, which is the last common intermediate in the synthesis of the three aromatic amino acids phenylalanine, tyrosine and tryptophan. Despite the overall redox-neutral reaction, catalysis has an absolute requirement for reduced flavin. In the fungus Neurospora crassa, a flavin reductase (FR) activity able to generate reduced flavin mononucleotide in the presence of NADPH is an intrinsic feature of a bifunctional CS. In all bacterial and plant species investigated to date, purified CSs lack an FR activity and are correspondingly 8–10 kDa smaller than the N. crassa CS (on the basis of SDS–PAGE). The cloning of N. crassa CS and subsequent characterization of the purified heterologously expressed enzyme indicates that, surprisingly, the FR probably resides within a region conserved amongst both mono- and bifunctional CSs and is not related to non-homologous sequences which contribute to the larger molecular mass of the N. crassa CS. This information directed this work towards the smaller Saccharomyces cerevisiae CS, the sequence of which was known, although the protein has not been extensively characterized biochemically. Here the characterization of the S. cerevisiae CS is reported in more detail and it is shown that the protein is also bifunctional. With this knowledge, S. cerevisiae could be used as a genetic system for studying the physiological consequences of bifunctionality. The phylogenetic relationship amongst known CSs is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words: Aromatic amino acids ; Chorismate synthase ; Flavin reductase ; Shikimate pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Chorismate synthase, the seventh enzyme in the shikimate pathway, catalyzes the transformation of 5-enolpyruvylshikimate 3-phosphate to chorismate which is the last common precursor in the biosynthesis of numerous aromatic compounds in bacteria, fungi and plants. The enzyme has an absolute requirement for reduced FMN as a cofactor, although the 1,4-anti elimination of phosphate and the C(6proR)-hydrogen does not involve a net redox change. The role of the reduced FMN in catalysis has long been elusive. However, recent detailed kinetic and bioorganic approaches have fundamentally advanced our understanding of the mechanism of action, suggesting an initial electron transfer from tightly bound reduced flavin to the substrate, a process which results in C—O bond cleavage. Studies on chorismate synthases from bacteria, fungi and plants revealed that in these organisms the reduced FMN cofactor is made available in different ways to chorismate synthase: chorismate synthases in fungi – in contrast to those in bacteria and plants – carry a second enzymatic activity which enables them to reduce FMN at the expense of NADPH. Yet, as shown by the analysis of the corresponding genes, all chorismate synthases are derived from a common ancestor. However, several issues revolving around the origin of reduced FMN, as well as the possible regulation of the enzyme activity by means of the availability of reduced FMN, remain poorly understood. This review summarizes recent developments in the biochemical and genetic arena and identifies future aims in this field.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Key words: Baculovirus/insect cell expression –Lycopersicon (wound response) – Plant defense – Prosystemin – Systemin – Wound response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract.  Tomato (Lycopersicon esculentum Mill.) prosystemin in fusion with a viral signal peptide was expressed in Sf21 insect cell cultures after infection with recombinant baculoviruses. Prosystemin was purified from culture supernatants and its identity was confirmed by N-terminal sequence and mass-spectral analyses. Recombinant prosystemin was found to be equally active as compared to systemin in inducing the expression of wound-response genes in tomato plants. In cultured cells of L. peruvianum, prosystemin elicited a rapid alkalinization of the growth medium. The timing and dose-dependence of the alkalinization response were found to be identical for prosystemin and systemin, respectively. Prosystemin-triggered defense responses were inhibited by a competitive antagonist of systemin activity, indicating that the systemin sequence within the primary structure of prosystemin determines its activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Key words: Fusicoccin –Lycopersicon–nahG-tobacco – Plasma-membrane H+-ATPase – Pathogenesis-related protein – Salicylic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract.  Treatment of tomato plants (Lycopersicon esculentum Mill.) with fusicoccin (FC), an activator of the plasma-membrane H+-ATPase which maintains an electrochemical gradient across the plasma membrane, resulted in a dose-dependent accumulation of transcripts for intra- and extracellular pathogenesis-related (PR) proteins. The accumulation of PR protein transcripts was paralleled by an increase in leaf salicylic acid (SA) content. Transcripts of PR proteins and SA started to accumulate 3 h after FC treatment. 2-Aminoindan-2-phosphonic acid, an inhibitor of SA synthesis, was used to assess the role of SA in FC-mediated induction of PR gene expression. 2-Aminoindan-2-phosphonic acid was found to suppress the accumulation of SA but not the induction of PR gene expression in response to FC treatment. Furthermore, in transgenic tobacco plants overexpressing a bacterial salicylate hydroxylase gene (nahG-tobacco), PR transcripts accumulated after FC treatment to levels similar to those observed in control tobacco plants. The data indicate a role for the proton gradient across the plasma membrane in the SA-independent induction of PR gene expression.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 39 (1999), S. 749-760 
    ISSN: 1573-5028
    Keywords: absence of introns ; gene family ; kexin ; plant protease ; subtilase ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gene family of subtilisin-like serine proteases (subtilases, SBTs) in tomato (Lycopersicon esculentum Mill.) comprises at least 15 members, 12 of which have been characterized in this study. Sequence comparison revealed that tomato subtilases fall into 5 distinct subfamilies. Single genes were shown to exist for LeSBT1, LeSBT2 and tmp, while 5 and 6 genes were found in the LeSBT3/4 and P69 subfamilies, respectively. With the exception of tmp, tomato subtilase genes were found to lack introns. Expression of subtilase genes was confirmed at the mRNA level by northern blot analysis and/or by primer extension experiments. For each of the 5 subtilase subfamilies, a distinctive pattern of expression was observed in tomato organs. At least one of the subtilases was found to be expressed in each organ analysed. Structural features evident from deduced amino acid sequences are discussed with reference to the related mammalian proprotein convertases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 40 (1999), S. 763-769 
    ISSN: 1573-5028
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 31 (1996), S. 1073-1077 
    ISSN: 1573-5028
    Keywords: aspartic protease ; methyl jasmonate ; plant defense ; systemin ; tomato leaves
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length cDNA encoding an aspartic protease (LeAspP) has been cloned from a tomato leaf cDNA library. Using LeAspP cDNA as a probe in gel blots, LeAspP mRNA was shown to be systemically induced in tomato leaves by wounding. Application of methyl jasmonate to leaves of intact tomato plants, or supplying systemin to young tomato plants through their cut stems, induces synthesis of LeAspP mRNA. LeAspP message is regulated in tomato similar to several systemic wound response proteins (swrps) that are part of the defense response in tomato plants directed against herbivore attacks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 18 (1996), S. 27-33 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Insect and pathogen attacks activate plant defense genes within minutes in nearby cells, and within hours in leaves far distant from the sites of the predator attacks. A search for signal molecules involved in both the localized and distal signalling has resulted in the identification of an 18-amino-acid polypeptide, called systemin, that activates defense genes in leaves of tomato plants when supplied at levels as low as fmols/plant. Several lines of evidence support a role for systemin as a wound hormone. As with animal polypeptide hormones, systemin is derived from a larger precursor protein, called prosystemin, by limited proteolysis. Systemin has been shown by autoradiography to be phloemmobile and, by antisense technology, to be an essential component of the wound-inducible, systemic signal transduction system leading to the transcriptional activation of the defensive genes. A search for the receptor of systemin has led to the identification in plant plasma membranes of a systeminbinding protein. However, this protein has properties not of a receptor, but of a furin-like proteinase that cleaves systemin into smaller polypeptides. Systemin and its precursor prosystemin provide prototypes for the emerging possibilities that polypeptide hormones may have broad roles in signalling environmental stress responses, and in regulating plant growth and development as well.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...