Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 26 (1997), S. 1-15 
    ISSN: 1432-0789
    Keywords: Key words Analytical pyrolysis ; Humic substances ; Heterocyclic nitrogen ; 15N NMR ; Mass spectrometry ; Soil organic matter ; Model structure ; Unidentified nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract 1. From the data presented herein it is possible to deduce the following distribution of total N in humic substances and soils: proteinaceous materials (proteins, peptides, and amino acids) – ca. 40%; amino sugars – 5–6%; heterocyclic N compounds (including purines and pyrimidines) – ca. 35%; NH3–19%; approximately 1/4 of the NH3 is fixed NH4 +. Thus, proteinaceous materials and heterocyclics appear to be major soil N components. 2. Natural 15N abundance levels in soils and humic materials are so low that direct analysis by 15N NMR is very difficult or impossible. To overcome this difficulty, the soil or humic material is incubated with 15N-enriched fertilizer. Even incubation in the laboratory for up to 630 days does not produce the same types of 15N compounds that are formed in soils and humic materials over hundreds or thousands of years. For example, very few 15N-labelled heterocyclics are detected by 15N NMR. Does this mean that heterocyclics are not present? Or are the heterocyclics that are present not labelled under these experimental conditions and therefore not detected by the 15N NMR spectrometer ? Another possibility is that a large number of N heterocyclics occur in soils, but each type occurs in very low concentrations. Until the sensitivity is improved, 15N NMR will not provide results that can be compared with data obtained from the same soil and humic material samples by chemical methods and mass spectroscopy. 3. What is most important with respect to agricultural is that all major N forms in soils are available to organisms and are sources of NH3 or NH4 + for plant roots and microbes. Naturally, some of the NH3 will enter the N cycle. 4. From chemical and pyrolysis-mass spectrometric analyses it appears that N heterocylics are significant components of the SOM, rather than degradation products of other molecules due to pyrolysis. The arguments in favor of N heterocyclics as genuine SOM components are the following: a) Some N-heterocyclics originate from biological precursors of SOM, such as proteinaceous materials, carbohydrates, chlorophyll, nucleic acids, and alkaloids, which enter the soil system as plant residues or remains of animals. b) In aquatic humic substances and dissolved organic matter (DOM) at considerably lower pyrolysis temperatures (200 to 300°C), free and substituted N-heterocyclics such as pyrroles, pyrrolidines, pyridines, pyranes, and pyrazoles, have been identified by analytical pyrolysis (Schulten et al 1997b). c) Their presence in humic substances and soils was also detected without pyrolysis by gel chromatography – GC/MS after reductive acetylation (Schnitzer and Spiteller 1986), by X-ray photoelectron spectroscopy (Patience et al. 1992), and also by spectroscopic, chromatographic, chemical, and isotopic methods (Ikan et al. 1992). 5. While we can see light at the end of the tunnel as far as soil-N is concerned, further research is needed to identify additional N-containing compounds such as N- heterocyclics, to determine whether these are present in the soil or humic materials in the form in which they were identified or whether they originate from more complex structures. If the latter is correct, then we need to isolate these complex N-molecules and attempt to identify them.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Microbial activity ; Groundwater contamination ; Pesticides ; Spodic horizons ; Landscape planning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In sandy gleyic soils with a low groundwater table under arboriculture in Northwest Germany, a wide variation of groundwater pollution by pesticides has been observed. We therefore examined data on microbial activity and soil organic matter composition by wet chemistry, cross-polarization magic-angle spinning and 13C nuclear magnetic resonance, and pyrolysis-field ionization mass spectromy. However, neither microbial activity nor the soil organic matter composition of cultivated topsoils explained the differences in xenobiotic leaching into the groundwater. Data from Anthrosols suggested that these soils have a higher capacity for pesticide bonding because of high amounts of aromatic and carboxylic C moieties in the soil organic matter. However, despite the same pesticide inputs and time of application, the leached output from these soils was higher than that from the Podzols. Initial data from subsoil investigations suggest that the presence of a spodic horizon most likely reduces groundwater pollution by pesticides. Studies to assess fixation capacity and desorption kinetics in Bh horison seem warranted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 17-23 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Hot water extract ; Field experiment ; Soil biomass ; Temporal variations ; Soil fertility ; NMR ; Analytical pyrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Hot water-soluble organic matter was extracted from soil samples collected weekly between April and October in untreated and NPK+farmyard manure-fertilized plots in the 88-year-old Static Experiment (Loess Chernozem) at Bad Lauchstädt, Germany. As shown by solid-state 13C-nuclear magnetic resonance spectroscopy (13C-NMR) combined with pyrolysis-field ionization mass spectrometry this organic matter fraction was largely composed of carbohydrates and N-containing compounds, in particular amino-N species and amides. This composition and the low pyrolysis temperatures (mainly between 300 and 500°C) indicated its origin from soil biomass and root exudates and lysates, and its presence in the soil solution or weakly adsorbed by soil minerals and humic macromolecules. Long-term fertilization with NPK+farmyard manure resulted in larger mean concentrations of hot water-extracted C and N (0.933 and 0.094 g kg-1) than soil management without fertilization (0.511 and 0.056 g kg-1). The C and N extracted by hot water were in the range of 3–5% of total soil C and N. In the two treatments distinct temporal changes were observed, which appeared to be related to population dynamics of soil organisms, root growth and decomposition, and climatic influences on soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 81-88 
    ISSN: 1432-0789
    Keywords: Fertilization experiment ; Soil organic matter ; Soil particle-size fractions ; Pyrolysis-field ionization mass spectrometry ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The influence of more than 100 years of fertilization with farmyard manure on soil organic matter in comparison to unfertilized soil was studied in particle-size fractions using elemental (C and N) analyses and pyrolysis-field ionization mass spectrometry. Distinct differences in C and N concentrations and distribution and in the quality of organic matter between the size fractions and the fertilization treatments were observed. Clay-associated C and N were relatively higher in the unfertilized treatment, whereas the application of farmyard manure preferentially increased soil organic matter associated with the fine and medium silt fractions. Pyrolysis-field ionization mass spectrometry of soil fractions 〈20 μm showed increasing values for lignin monomers and dimers and fatty acids with larger equivalent diameters, whereas the proportion of N compounds, mono- and polysaccharides and phenolics decreased in the larger size fractions. Sand fractions were particularly rich in lignin fragments, mono- and polysaccharides, and alkanes/alkenes. These relationships seemed to be independent of management practices. In the same size fractions of the different treatments, however, a higher relative abundance of N-compounds, mono- and polysaccharides, phenolics, lignin monomers, and alkanes/alkenes was observed in the unfertilized variant. Lignin dimers and fatty acids were more abundant in the farmyard manure treatment. Both trends together imply that soil enrichment in organic matter due to the application of farmyard manure largely reflects an increase in lignin building blocks and partly reflects an increase in lipids such as fatty acids in the silt fractions. Therefore these constituents are of particular importance in assessing the positive effects of farmyard manure on soil fertility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 14 (1992), S. 237-245 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Long-term experiment ; Molecular composition ; Pyrolysis-mass spectrometry ; Grass residues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The formation of soil organic matter from grass residues was studied using samples of a long-term experiment (34 years) on humus and soil formation at Rostock, Germany (Hu 3), by elemental analyses (C and N) and pyrolysis-field ionization mass spectrometry of grass residues, humus-free loamy marl, mixtures of this loamy marl with grass roots, and whole soil samples from the 2nd, 7th, 13th, 19th, 25th, 29th, and 34th year of the experiment. The pyrolysis-field ionization mass spectra of the two grass species Phleum pratense and Lolium multiflorum were similar insofar as signals characteristic of lignin dimers and phytosterols dominated at higher masses and for mono-and polysaccharides at lower masses. The most prominent differences between overand underground plant constituents were indicated by higher relative abundances of lignin dimers in the stems and leaves and of sugars and suberin-derived phytosterols in the roots. In the investigation of the influence of mineral to organic matter ratios, comparatively weak effects of the inorganic matrix were obtained: firstly, in the lower mass range (m/z〈250), secondly, for organic matter concentrations between 1.0% and 2.0%, and thirdly, for certain classes of compounds such as phenols, alkanes/alkenes, N heterocycles and mono-and polysaccharides. The qualitative differences in the molecular composition of soil organic matter were clearly attributed to its rapid increase during the first 7 years of the experiment and largely originated from a relative enrichment of lignin dimers. Then, in the period of steady-state soil organic matter levels, dynamic changes were indicated by slight enrichments of mono-and polysaccharides, alkanes/alkenes, fatty acids, N heterocycles, and fluctuating data for phenols/lignin monomers, lignin dimers, and the sum of N compounds. Alkylaromatics showed a steep increase between the 13th and 19th years and remained then on a high level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...