Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cytotechnology 22 (1996), S. 263-267 
    ISSN: 1573-0778
    Keywords: biodegradable ; bone regeneration ; cell culture ; human cell osteoblasts ; polymers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The care of patients with a skeletal deficiency currently involves the use of bone graft or a non-biologic material such as a metal or polymer. There are alternate possibilities in development which involve the growth of bone cells (osteoblasts) on degradable polymer scaffolds. These tissue engineering strategies require production of the polymeric scaffold, cellular harvest followed by either ex vivo or in vivo growth of the cells on the scaffold, and exploration of the interaction between the cell and scaffold. Research into these strategies utilizes cells from a variety of species, but clinical applications will likely require human osteoblasts. This study explores the process whereby human osteoblasts are harvested under sterile conditions during joint replacement surgery from normally discarded cancellous bone, transported from the operating room to the lab, and grown in culture. This process is feasible, and the cells express their phenotype via the production of alkaline phosphatase and collagen in culture.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 41 (1998), S. 1-7 
    ISSN: 0021-9304
    Keywords: bone tissue engineering ; poly(propylene fumarate) ; biodegradable polymer ; unsaturated polymer ; in situ polymerizable biomaterials ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: This study was designed to investigate the in vivo biodegration and biocompatibility of a poly(propylene fumarate) (PPF)-based orthopedic biomaterial. The effects of varying the PPF to N-vinyl pyrrolidinone ratio and PPF to β-tricalcium phosphate content were studied. The composite mechanical properties and local tissue interactions were analyzed over 12 weeks. An initial increase in both compressive modulus and strength was seen for composite formulations that incorporated β-tricalcium phosphate. The samples incorporating a higher PPF to N-vinyl pyrrolidinone ratio reached a maximal compressive strength of 7.7 MPa and a maximal compressive modulus of 191.4 MPa at 3 weeks. The lower PPF to N-vinyl pyrrolidinone ratio samples gained a maximum compressive strength of 7.5 MPa initially and a compressive modulus of 134.0 MPa at 1 week. At 6 weeks, all samples for formulations incorporating β-tricalcium phosphate crumbled upon removal and were not mechanically tested. Samples that did not incorporate β-tricalcium phosphate were very weak and insufficient for bone replacement at the 4-day time point and beyond. Tissue interactions resulted in a mild inflammatory response at the initial time points and mature fibrous encapsulation by 12 weeks. © 1998 John Wiley & Sons, Inc. J. Biomed Mater Res, 41, 1-7, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...