Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 85 (1955), S. 29-34 
    ISSN: 1573-5060
    Keywords: antibiotic resistance ; biolistics ; chloroplast mutations ; Nicotiana ; 16S ribosomal RNA genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Stable chloroplast transformants were first obtained following particle bombardment of tobacco leaves, and later by PEG-mediated uptake of DNA by protoplasts. The transforming DNA in these studies was itself of plastid origin and carried double (streptomycin, spectinomycin) antibiotic resistance which was used to select transformants. Integration was by homologous recombination, and both donor and recipient were Nicotiana species. Recent characterisation of plastid mutants of Solanum nigrum has allowed the extension of this gene replacement approach to include Nicotiana:Solanum combinations. The introduction of functional heterologous genes into the plastome is an alternative approach based on the use of constructs in which a bacterial resistance gene is flanked by sequences homologous to a region of the recipient plastome. Thus homologous recombination in the flanking sequences allows introduction of a foreign gene. A large number of putative transformants can be generated by the method, but this apparent attraction is partly offset by the need for repeated cycles of re-selection to obtain homoplasmic plants. In contrast, homoplasmy can be accomplished in a single selection step using plastome-encoded antibiotic resistance markers. The plastome is an attractive target for the introduction of useful genes into crop plants, as maternal inheritance acts as an insurance against unwanted spread of the foreign gene, and the large plastome copy number ensures immediate gene amplification and may influence levels of expression. Specific characters encoded on the plastid DNA, including components of photosynthesis and other aspects of metabolism, will also become open to manipulation as a consequence of developments in plastid transformation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...