Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Digestive diseases and sciences 34 (1989), S. 1173-1179 
    ISSN: 1573-2568
    Keywords: human ; colonic slow-wave activity ; myoelectric activity ; fast Fourier transform
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The fast Fourier transform (FFT) has been used to determine frequency components of colonic slow-wave activity. We studied the effect of (1) recorder filter characteristics, (2) number of data points and, (3) data window overlap technique and ingestion of a 1000-kcal meal on the resulting power spectrum. Human rectosigmoid slow-wave activity was recorded in nine normal subjects and stored on FM tape for computer analysis. The dynograph filter characteristics were tested using square wave signals, and derived compensation factors were applied to the FFT before viewing. The dynograph filter, when set to optimize visualization of slow waves, attenuates low frequencies nonlinearly. Failure to compensate for the dynograph filter results in inaccurate detection of slow-wave frequencies. FFT of 1-min data gives a different power spectrum than an FFT of 4 min data, indicating a rapidly changing waveform. FFT's of 1 min of data when examined over time fail to demonstrate a consistent frequency spectrum, confirming this conclusion. The lower frequencies in the normal human rectosigmoid are present at the greatest power. These studies indicate that the colon has slow waves of irregular frequencies, in contrast to the stomach or small intestine. No change in the dominant frequency was seen following the ingestion of a 1000-kcal meal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...