Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • constitutive representations  (1)
  • solid-state diffusion  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of statistical physics 95 (1999), S. 1361-1427 
    ISSN: 1572-9613
    Keywords: phase transitions ; solid-state diffusion ; elasticity ; generalized Gibbs–Thomson relation ; Cahn–Hilliard theory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Using the framework of modern continuum thermomechanics, we develop sharp- and diffuse-interface theories for coherent solid-state phase transitions. These theories account for atomic diffusion and for deformation. Of essential importance in our formulation of the sharp-interface theory are a system of “configurational forces” and an associated “configurational force balance.” These forces, which are distinct from standard Newtonian forces, describe the intrinsic material structure of a body. The configurational balance, when restricted to the interface, leads to a generalization of the classical Gibbs–Thomson relation, a generalization that accounts for the orientation dependence of the interfacial energy density and also for a broad spectrum of dissipative transition kinetics. Our diffuse-interface theory involves nonstandard “microforces” and an associated “microforce balance.” These forces arise naturally from an interpretation of the atomic densities as macroscopic parameters that describe atomistic kinematics distinct from the motion of material particles. When supplemented by thermodynamically consistent constitutive relations, the microforce balance yields a generalization of the Cahn–Hilliard relation giving the chemical potentials as variational derivatives of the total free energy with respect to the atomic densities. A formal asymptotic analysis (thickness of the transition layer approaching zero) demonstrates the correspondence between versions of our theories specialized to the case of a single mobile species for situations in which the time scale for interface propagation is small compared to that for bulk diffusion. While the configurational force balance is redundant in the diffuse-interface theory, when integrated over the transition layer, the limit of this balance is the interfacial configurational force balance (i.e., generalized Gibbs–Thomson relation) of the sharp-interface theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of elasticity 56 (1999), S. 33-58 
    ISSN: 1573-2681
    Keywords: nematic elastomers ; optical elastomers ; material constraints ; constitutive representations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We develop a continuum theory for the mechanical behavior of rubber-like solids that are formed by the cross-linking of polymeric fluids that include nematic molecules as elements of their main-chains and/or as pendant side-groups. The basic kinematic ingredients of this theory are identical to those arising in continuum-level theories for nematic fluids: in addition to the deformation, which describes the trajectories of material particles, an orientation, which delineates the evolution of the nematic microstructure, is introduced. The kinetic structure of our theory relies on the precept that a complete reckoning of the power expended during the evolution of a continuum requires the introduction of forces that act conjugate to each operative kinematic variable and that to each such force system there should correspond a distinct momentum balance. In addition to conventional deformational forces, which expend power over the time-rate of the deformation and enter the deformational (or linear) momentum balance, we, therefore, introduce a system of orientational forces, which expend power over the time-rate of the orientation and enter an additional orientational momentum balance. We restrict our attention to a purely mechanical setting, so that the thermodynamic structure of our theory rests on an energy imbalance that serves in lieu of the first and second laws of thermodynamics. We consider only nematic elastomers that are incompressible and microstructurally inextensible, and a novel aspect of our approach concerns our treatment of these material constraints. We refrain both from an a priori decomposition of fields into active and reactive components and an introduction of Lagrange multipliers; rather, we start with a mathematical decomposition of the dependent fields such as the deformational stress based on the geometry of the constraint manifold. This naturally gives rise to active and reactive components, where only the former enter into the energy imbalance because the latter automatically expend zero power in processes consistent with the constraints. The reactive components are scaled by multipliers which we take to be constitutively indeterminate. We assume constitutive equations for the active components, and the requirement that these equations be consistent with the energy imbalance in all processes leads to the active components being determined by an energy density response function of the deformation gradient, the orientation, and the orientation gradient. We formulate the requirements of observer independence and material symmetry for such a function and provide, as a specialization, an expression that encompasses the energy densities used in the Mooney-Rivlin description of rubber and the Oseen-Zöcher-Frank description of nematic fluids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...