Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 48 (1995), S. 246-256 
    ISSN: 0006-3592
    Keywords: polyethylene glycol ; phosphate ; phase separation ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Phase separation times for polyethylene glycol (PEG)-4000-phosphate aqueous two-phase systems were studied, for small scale (5-g) and large scale (1300-g) systems, as a -function of the stability ratio. Profiles of dispersion height for both large and small scale systems were represented as a fraction of the initial height and were found to be independent of the geometrical dimensions of the separator. Furthermore, by plotting time as a fraction of the initial height the total time of separation can be calculated for a given height of system at a particular stability ratio. This generalization is important for the design of large scale aqueous two-phase separators. Phase separation times were also found to be dependent on which of the phases is continuous. A characteristic change in phase separation time was also observed at the phase inversion point (i.e., where the dispersed phase changes to a continuous phase and vice versa) and this point tends toward higher volume ratios as the tie-line length (TLL) is increased. Furthermore, the phase inversion point at each TLL corresponds to a fixed phosphate concentration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 45 (1995), S. 91-94 
    ISSN: 0006-3592
    Keywords: mass transfer ; Monod equation ; growth rate ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An alternative interpretation of the growth rate-substrate concentration dependence is presented. This is based on the assumption that the main factors affecting growth rate are transfer of substrate from the medium and the maximum growth velocity, which is that observed when no substrate limitations occur. This approach allows the approximate prediction of one of the two kinetic constants required, and may be of great use, especially for continuous cultures. It is the first attempt to provide a phenomenological explanation for the large variations observed in the values of the Monod constant, Ks, reported in the literature. © 1995 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...